Exploring the lunar water cycle

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-12-16 DOI:10.1073/pnas.2321065121
Philipp Reiss
{"title":"Exploring the lunar water cycle","authors":"Philipp Reiss","doi":"10.1073/pnas.2321065121","DOIUrl":null,"url":null,"abstract":"The presence of water on the Moon has been indicated by various remote-sensing observations and analyses of returned samples. Several missions are planned to conduct new in situ research on the lunar surface to directly observe and characterize lunar water. A comprehensive characterization of the present forms of water, their abundance, spatial distribution, temporal variation, and possible origin is required to understand the lunar water cycle and the relevance of individual source and sink mechanisms and transformations between the involved volatile species. These processes extend over vastly different scales, and the governing parameters are often insufficiently constrained by experimental and observational data. Here, I present a brief overview of the current state of knowledge on the lunar water cycle, its relevance for lunar science and exploration, and some of the main challenges of modeling and future in situ analyses aiming to substantially advance the understanding of lunar water occurrences.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"47 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2321065121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of water on the Moon has been indicated by various remote-sensing observations and analyses of returned samples. Several missions are planned to conduct new in situ research on the lunar surface to directly observe and characterize lunar water. A comprehensive characterization of the present forms of water, their abundance, spatial distribution, temporal variation, and possible origin is required to understand the lunar water cycle and the relevance of individual source and sink mechanisms and transformations between the involved volatile species. These processes extend over vastly different scales, and the governing parameters are often insufficiently constrained by experimental and observational data. Here, I present a brief overview of the current state of knowledge on the lunar water cycle, its relevance for lunar science and exploration, and some of the main challenges of modeling and future in situ analyses aiming to substantially advance the understanding of lunar water occurrences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各种遥感观测和对返回样本的分析表明,月球上存在水。计划中的几个飞行任务将对月球表面进行新的实地研究,以直接观测月球水并确定其特征。为了了解月球水循环和各个源和汇机制的相关性以及相关挥发性物种之间的转化,需要对水的现有形式、丰度、空间分布、时间变化和可能的起源进行全面描述。这些过程的尺度相差很大,而实验和观测数据往往不能充分制约这些过程的参数。在此,我将简要概述目前对月球水循环的认识状况、其与月球科学和探索的相关性,以及建模和未来现场分析所面临的一些主要挑战,目的是大幅提高对月球水发生情况的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Correction for Tran-Kiem and Bedford, Estimating the reproduction number and transmission heterogeneity from the size distribution of clusters of identical pathogen sequences. Correction to Supporting Information for Le et al., Motor neuron disease, TDP-43 pathology, and memory deficits in mice expressing ALS-FTD-linked UBQLN2 mutations. Correction for Alboreggia et al., Targeted degradation of Pin1 by protein-destabilizing compounds. Correction for Jury et al., Experimental coral reef communities transform yet persist under mitigated future ocean warming and acidification. Correction for Mehmood et al., Teacher vaccinations enhance student achievement in Pakistan: The role of role models and theory of mind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1