CO2 Poisoning of CNx Catalysts for the Oxygen Reduction Reaction

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2024-12-17 DOI:10.1021/acs.jpcc.4c07363
Aishwarya Rao, Vance Gustin, Jonathan Hightower, Seval Gunduz, Dishari Basu, Yehia Khalifa, Anant Sohale, Anne C. Co, Aravind Asthagiri, Umit S. Ozkan
{"title":"CO2 Poisoning of CNx Catalysts for the Oxygen Reduction Reaction","authors":"Aishwarya Rao, Vance Gustin, Jonathan Hightower, Seval Gunduz, Dishari Basu, Yehia Khalifa, Anant Sohale, Anne C. Co, Aravind Asthagiri, Umit S. Ozkan","doi":"10.1021/acs.jpcc.4c07363","DOIUrl":null,"url":null,"abstract":"CN<sub><i>x</i></sub> catalysts show promising activity and stability for the oxygen reduction reaction (ORR) under acidic conditions, but the nature of the active site is still under debate. ORR on CN<sub><i>x</i></sub> has been found to be resistant to common poisons such as CO, H<sub>2</sub>S, and CN. In this study, we demonstrate that bubbling CO<sub>2</sub> in the electrolyte can lead to the partial poisoning of CN<sub><i>x</i></sub> for ORR activity. Cyclic voltammetry (CV) experiments show a partial decrease in the ORR activity for CN<sub><i>x</i></sub> catalysts after bubbling CO<sub>2</sub> through a 0.1 M HClO<sub>4</sub> electrolyte. The relative stability of CO<sub>2</sub>-derived species (CO<sub>2</sub>*, H<sub>2</sub>CO<sub>3</sub>*, HCO<sub>3</sub>*, and CO<sub>3</sub>*) on 13 CN<sub><i>x</i></sub> site models at 1.0 V-RHE was examined using density functional theory (DFT). The calculations predict that HCO<sub>3</sub> is favored adjacent to the N species on several CN<sub><i>x</i></sub> site models and CO<sub>3</sub> is favored on pyrrolic sites. Difference spectra of the N 1s from near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) of the ex-situ poisoned CN<sub><i>x</i></sub> and pristine CN<sub><i>x</i></sub> shows a shift in binding energies of N species that qualitatively match the DFT N 1s binding energy shifts due to HCO<sub>3</sub>/CO<sub>3</sub> on the CN<sub><i>x</i></sub> site models. DFT predicts that these HCO<sub>3</sub> surface species can block and delay the initial step of the ORR on several CN<sub><i>x</i></sub> sites.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"26 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07363","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CNx catalysts show promising activity and stability for the oxygen reduction reaction (ORR) under acidic conditions, but the nature of the active site is still under debate. ORR on CNx has been found to be resistant to common poisons such as CO, H2S, and CN. In this study, we demonstrate that bubbling CO2 in the electrolyte can lead to the partial poisoning of CNx for ORR activity. Cyclic voltammetry (CV) experiments show a partial decrease in the ORR activity for CNx catalysts after bubbling CO2 through a 0.1 M HClO4 electrolyte. The relative stability of CO2-derived species (CO2*, H2CO3*, HCO3*, and CO3*) on 13 CNx site models at 1.0 V-RHE was examined using density functional theory (DFT). The calculations predict that HCO3 is favored adjacent to the N species on several CNx site models and CO3 is favored on pyrrolic sites. Difference spectra of the N 1s from near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) of the ex-situ poisoned CNx and pristine CNx shows a shift in binding energies of N species that qualitatively match the DFT N 1s binding energy shifts due to HCO3/CO3 on the CNx site models. DFT predicts that these HCO3 surface species can block and delay the initial step of the ORR on several CNx sites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧还原反应中CNx催化剂的CO2中毒
CNx催化剂在酸性条件下表现出良好的氧还原反应(ORR)活性和稳定性,但活性位点的性质仍存在争议。CNx上的ORR已被发现能够抵抗常见的毒物,如CO、H2S和CN。在这项研究中,我们证明了电解液中冒泡的CO2可以导致CNx对ORR活性的部分中毒。循环伏安(CV)实验表明,在0.1 M HClO4电解液中鼓泡CO2后,CNx催化剂的ORR活性部分下降。利用密度泛函理论(DFT)研究了1.0 V-RHE条件下13个CNx位点模型上CO2衍生物质(CO2*、H2CO3*、HCO3*和CO3*)的相对稳定性。计算结果表明,在几种CNx位点模型中,HCO3倾向于靠近N种,而CO3倾向于靠近吡啶类位点。脱位毒化CNx和原始CNx的近环境压力x射线光电子能谱(NAP-XPS)差谱显示,n1s的结合能的变化与DFT n1s结合能的变化在CNx位点模型上由HCO3/CO3引起的变化有质的匹配。DFT预测这些HCO3表面物质可以阻断和延迟几个CNx位点上ORR的初始步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
XAFS Investigation of Monometallic Catalysts (Au, Pt, Pd, Ru, Cu) on Ionic Liquid-Functionalized SBA-15: Structural Characterization and Catalytic Hydrogenation of p-Nitrophenol Role of Solid–Water Interaction and Film Thickness on Nanoscale Water Evaporation Using Molecular Dynamics Monitoring Gold Nanoparticle Formation by In Situ Transient Absorption Spectroscopy The Impact of Silanol Defects on the Properties of Zeolite-Based Microporous Water Elucidation of the Difference in the Volume Expansion Anisotropy between i- and n-type Silicon Pillars during the Lithiation Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1