Real-time cell barrier monitoring by spatial transepithelial electrical resistance measurement on a microelectrode array integrated Transwell.

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2024-12-17 DOI:10.1039/d4lc00817k
Yimin Shi, Sheng Sun, Hui Liu, Mingda Zhao, Meiyan Qin, Jinlong Liu, Jingfang Hu, Yang Zhao, Mingxiao Li, Lingqian Zhang, Chengjun Huang
{"title":"Real-time cell barrier monitoring by spatial transepithelial electrical resistance measurement on a microelectrode array integrated Transwell.","authors":"Yimin Shi, Sheng Sun, Hui Liu, Mingda Zhao, Meiyan Qin, Jinlong Liu, Jingfang Hu, Yang Zhao, Mingxiao Li, Lingqian Zhang, Chengjun Huang","doi":"10.1039/d4lc00817k","DOIUrl":null,"url":null,"abstract":"<p><p>Transepithelial electrical resistance (TEER) measurement is a label free, rapid and real-time technique, which is commonly used to evaluate the integrity of cell barriers. TEER characterization is important for applications, such as tissue (brain, intestines, lungs) barrier modeling, drug screening, and cell growth monitoring. Traditional TEER methods usually only show the average impedance of the whole cell layer, and lack accuracy and the characterization of internal spatial differences within cell layer regions. Here, we introduce a new spatial TEER strategy that utilizes microelectrode arrays (MEA) integrated in a Transwell to dynamically monitor TEER. A new electrical model which could reveal spatial impedance non-uniformity was proposed to extract accurate resistance from the measured data. Based on our method, the TEER signals from 16 different regions were successfully monitored in real time. The mapped impedance hotspots in different regions closely correlate with both fluorescence cell staining signals and calculated cell coverage, indicating the effectiveness of the developed spatial TEER system in monitoring local cell growth <i>in vitro</i>. The real-time spatial TEER responses to ethylene glycol-bis(β-aminoethylether)-<i>N</i>,<i>N</i>,<i>N</i>',<i>N</i>'-tetraacetic acid (EGTA) and cisplatin were studied, which could either reduce barrier integrity or inhibit cellular growth. The obtained results demonstrated the spatial TEER's applicability for cell barrier function and cell growth monitoring. Our approach provides accurate spatial electrical information of cell barriers and holds potential applications in drug development and screening.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00817k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Transepithelial electrical resistance (TEER) measurement is a label free, rapid and real-time technique, which is commonly used to evaluate the integrity of cell barriers. TEER characterization is important for applications, such as tissue (brain, intestines, lungs) barrier modeling, drug screening, and cell growth monitoring. Traditional TEER methods usually only show the average impedance of the whole cell layer, and lack accuracy and the characterization of internal spatial differences within cell layer regions. Here, we introduce a new spatial TEER strategy that utilizes microelectrode arrays (MEA) integrated in a Transwell to dynamically monitor TEER. A new electrical model which could reveal spatial impedance non-uniformity was proposed to extract accurate resistance from the measured data. Based on our method, the TEER signals from 16 different regions were successfully monitored in real time. The mapped impedance hotspots in different regions closely correlate with both fluorescence cell staining signals and calculated cell coverage, indicating the effectiveness of the developed spatial TEER system in monitoring local cell growth in vitro. The real-time spatial TEER responses to ethylene glycol-bis(β-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and cisplatin were studied, which could either reduce barrier integrity or inhibit cellular growth. The obtained results demonstrated the spatial TEER's applicability for cell barrier function and cell growth monitoring. Our approach provides accurate spatial electrical information of cell barriers and holds potential applications in drug development and screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过微电极阵列集成 Transwell 上的空间跨上皮电阻测量,实时监测细胞屏障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
Liquid metal electrodes enabled cascaded on-chip dielectrophoretic separation of large-size-range particles. A vascularized microfluidic model of the osteochondral unit for modeling inflammatory response and therapeutic screening. An intimal-lumen model in a microfluidic device: potential platform for atherosclerosis-related studies. 3D-printed acoustic metasurface with encapsulated micro-air-bubbles for frequency-selective manipulation. High-throughput microfluidic spheroid technology for early detection of colistin-induced nephrotoxicity with gradient-based analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1