Transdermal Insulin Delivery Using Ionic Liquid-Mediated Nanovesicles for Diabetes Treatment.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-01-13 Epub Date: 2024-12-17 DOI:10.1021/acsbiomaterials.4c02000
Fahmida Habib Nabila, Rashedul Islam, Li Yamin, Kawaguchi Yoshirou, Rie Wakabayashi, Noriho Kamiya, Muhammad Moniruzzaman, Masahiro Goto
{"title":"Transdermal Insulin Delivery Using Ionic Liquid-Mediated Nanovesicles for Diabetes Treatment.","authors":"Fahmida Habib Nabila, Rashedul Islam, Li Yamin, Kawaguchi Yoshirou, Rie Wakabayashi, Noriho Kamiya, Muhammad Moniruzzaman, Masahiro Goto","doi":"10.1021/acsbiomaterials.4c02000","DOIUrl":null,"url":null,"abstract":"<p><p>Transdermal insulin delivery is a promising method for diabetes management, providing the potential for controlled, sustained release and prolonged insulin effectiveness. However, the large molecular weight of insulin hinders its passive absorption through the stratum corneum (SC) of the skin, and high doses of insulin are required, which limits the commercial viability. We developed ethosome (ET) and <i>trans</i>-ethosome (TET) nanovesicle formulations containing a biocompatible lipid-based ionic liquid, [EDMPC][Lin], dissolved in 35% ethanol. TET formulations were obtained by adding isopropyl myristate (IPM), Tween-80, or Span-20 as surfactants to ET formulations. Dynamic light scattering, ζ-potential, transmission electron microscopy, and confocal laser scanning microscopy studies revealed that the nanovesicles had a stable particle size. The formulations remained stable at 4 °C for more than 3 months. ET and TET formulations containing IPM (TET1) significantly (<i>p</i> < 0.0001) enhanced the transdermal penetration of FITC-tagged insulin (FITC-Ins) in both mouse and pig skin, compared with that of the control FITC-Ins solution and other TET formulations, by altering the molecular structure of the SC layer. These nanovesicles were found to be biocompatible and nonirritants (cell viability >80%) in the <i>in vitro</i> and <i>in vivo</i> studies on three-dimensional (3D) artificial human skin and a diabetic mouse model, respectively. The ET and TET1 formulations were applied to the skin of diabetic mice at an insulin dosage of 30 IU/kg. The nanovesicle formulations significantly reduced blood glucose levels (BGLs) compared with the initial high BGL value (>150 mg/dL). The nanovesicle-treated mice maintained low BGLs for over 15 h, as opposed to only 2 h in the injection group. The ET and TET1 formulations reduced the BGLs by 62 and 34%, respectively, of the initial value. These ET and TET1 formulations have a high potential for use in commercial transdermal insulin patches, enhancing comfort and adherence in diabetes treatment.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"402-414"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Transdermal insulin delivery is a promising method for diabetes management, providing the potential for controlled, sustained release and prolonged insulin effectiveness. However, the large molecular weight of insulin hinders its passive absorption through the stratum corneum (SC) of the skin, and high doses of insulin are required, which limits the commercial viability. We developed ethosome (ET) and trans-ethosome (TET) nanovesicle formulations containing a biocompatible lipid-based ionic liquid, [EDMPC][Lin], dissolved in 35% ethanol. TET formulations were obtained by adding isopropyl myristate (IPM), Tween-80, or Span-20 as surfactants to ET formulations. Dynamic light scattering, ζ-potential, transmission electron microscopy, and confocal laser scanning microscopy studies revealed that the nanovesicles had a stable particle size. The formulations remained stable at 4 °C for more than 3 months. ET and TET formulations containing IPM (TET1) significantly (p < 0.0001) enhanced the transdermal penetration of FITC-tagged insulin (FITC-Ins) in both mouse and pig skin, compared with that of the control FITC-Ins solution and other TET formulations, by altering the molecular structure of the SC layer. These nanovesicles were found to be biocompatible and nonirritants (cell viability >80%) in the in vitro and in vivo studies on three-dimensional (3D) artificial human skin and a diabetic mouse model, respectively. The ET and TET1 formulations were applied to the skin of diabetic mice at an insulin dosage of 30 IU/kg. The nanovesicle formulations significantly reduced blood glucose levels (BGLs) compared with the initial high BGL value (>150 mg/dL). The nanovesicle-treated mice maintained low BGLs for over 15 h, as opposed to only 2 h in the injection group. The ET and TET1 formulations reduced the BGLs by 62 and 34%, respectively, of the initial value. These ET and TET1 formulations have a high potential for use in commercial transdermal insulin patches, enhancing comfort and adherence in diabetes treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子液体介导的纳米囊泡经皮胰岛素递送治疗糖尿病。
经皮胰岛素给药是一种很有前途的糖尿病治疗方法,提供了控制、持续释放和延长胰岛素有效性的潜力。然而,胰岛素的大分子量阻碍了其通过皮肤角质层(SC)的被动吸收,并且需要高剂量的胰岛素,这限制了其商业可行性。我们开发了乙醇体(ET)和反式乙醇体(TET)纳米囊泡配方,其中含有生物相容性脂基离子液体[EDMPC][Lin],溶解在35%乙醇中。将肉豆蔻酸异丙酯(IPM)、Tween-80或Span-20作为表面活性剂加入到ET配方中,得到TET配方。动态光散射、ζ电位、透射电子显微镜和共聚焦激光扫描显微镜研究表明,纳米囊泡具有稳定的粒径。配方在4℃下保持稳定3个月以上。与对照FITC-Ins溶液和其他TET制剂相比,含有IPM (TET1)的ET和TET制剂通过改变SC层的分子结构,显著(p < 0.0001)增强了fitc标记胰岛素(FITC-Ins)在小鼠和猪皮肤中的透皮渗透。在三维(3D)人造皮肤和糖尿病小鼠模型的体外和体内研究中,分别发现这些纳米囊泡具有生物相容性和无刺激性(细胞活力bbb80 %)。将ET和TET1制剂以胰岛素剂量30 IU/kg作用于糖尿病小鼠皮肤。与初始高血糖值(150 mg/dL)相比,纳米囊泡制剂显著降低了血糖水平(BGLs)。纳米囊泡处理的小鼠维持低bgl超过15小时,而注射组仅维持2小时。ET和TET1配方分别使bgl降低了初始值的62%和34%。这些ET和TET1制剂在商业透皮胰岛素贴剂中具有很高的应用潜力,可以提高糖尿病治疗的舒适度和依从性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Issue Publication Information Issue Editorial Masthead 3D Printing of Silicone Organogel Elastomers for Structured Soft Biomaterials. Alginate-Dialdehyde-Based Reporter Ink Enabling Online Detection of Matrix Metalloproteinase Activity of Encapsulated Cells. DNA/RNA Origami Based on Different Scaffolds and Their Biomedical Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1