Functional analysis of yak alveolar type II epithelial cells at high and low altitudes based on single-cell sequencing.

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular cell research Pub Date : 2024-12-15 DOI:10.1016/j.bbamcr.2024.119889
Jingyi Li, Nating Huang, Xun Zhang, Huizhen Wang, Jiarui Chen, Qing Wei
{"title":"Functional analysis of yak alveolar type II epithelial cells at high and low altitudes based on single-cell sequencing.","authors":"Jingyi Li, Nating Huang, Xun Zhang, Huizhen Wang, Jiarui Chen, Qing Wei","doi":"10.1016/j.bbamcr.2024.119889","DOIUrl":null,"url":null,"abstract":"<p><p>The adaptation of lung cells to high-altitude environments represents a notable gap in our understanding of how animals cope with hypoxic conditions. Alveolar epithelial cells type II (AEC II) are crucial for lung development and repair. However, their, specific role in the adaptation of yaks to high-altitude environments remains unclear. In this study, we aimed to address this gap by investigating the differential responses of AEC II in yaks at high and low altitudes (4000 m and 2600 m, respectively). We used the 10 × scRNA-seq technology to construct a comprehensive cell atlas of yak lung tissue, and identified 15 distinct cell classes. AEC II in high-altitude yaks revealed increased immunomodulatory, adhesive, and metabolic activities, which are crucial for maintaining lung tissue stability and energy supply under hypoxic conditions. Furthermore, alveolar epithelial progenitor cells within AEC II can differentiate into both Alveolar epithelial cell type I (AEC I) and AEC II. SHIP1 and other factors are promoters of AEC I transdifferentiation, whereas SFTPC and others promote AEC II transdifferentiation. This study provides new insights into the evolutionary adaptation of lung cells in plateau animals by elucidating the molecular mechanisms underlying AEC II adaptation to high-altitude environments.</p>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":" ","pages":"119889"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbamcr.2024.119889","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The adaptation of lung cells to high-altitude environments represents a notable gap in our understanding of how animals cope with hypoxic conditions. Alveolar epithelial cells type II (AEC II) are crucial for lung development and repair. However, their, specific role in the adaptation of yaks to high-altitude environments remains unclear. In this study, we aimed to address this gap by investigating the differential responses of AEC II in yaks at high and low altitudes (4000 m and 2600 m, respectively). We used the 10 × scRNA-seq technology to construct a comprehensive cell atlas of yak lung tissue, and identified 15 distinct cell classes. AEC II in high-altitude yaks revealed increased immunomodulatory, adhesive, and metabolic activities, which are crucial for maintaining lung tissue stability and energy supply under hypoxic conditions. Furthermore, alveolar epithelial progenitor cells within AEC II can differentiate into both Alveolar epithelial cell type I (AEC I) and AEC II. SHIP1 and other factors are promoters of AEC I transdifferentiation, whereas SFTPC and others promote AEC II transdifferentiation. This study provides new insights into the evolutionary adaptation of lung cells in plateau animals by elucidating the molecular mechanisms underlying AEC II adaptation to high-altitude environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
期刊最新文献
Blockage of polycystin-2 alleviates myocardial ischemia/reperfusion injury by inhibiting autophagy through the Ca2+/Akt/Beclin 1 pathway. Fidgetin binds spastin to attenuate the microtubule-severing activity. Functional analysis of yak alveolar type II epithelial cells at high and low altitudes based on single-cell sequencing. Hornerin expressed on endothelial cells via interacting with thrombomodulin modulates vascular inflammation and angiogenesis. A fluorescent protein C-terminal fusion knock-in is functional with TRPA1 but not TRPC5.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1