Inhibitory Effects of Gliadin Hydrolysates on BACE1 Expression and APP Processing to Prevent Aβ Aggregation.

IF 5.6 2区 生物学 International Journal of Molecular Sciences Pub Date : 2024-12-09 DOI:10.3390/ijms252313212
Chin-Yu Lin, Cheng-Hong Hsieh, Pei-Yu Lai, Ching-Wei Huang, Yung-Hui Chung, Shang-Ming Huang, Kuo-Chiang Hsu
{"title":"Inhibitory Effects of Gliadin Hydrolysates on BACE1 Expression and APP Processing to Prevent Aβ Aggregation.","authors":"Chin-Yu Lin, Cheng-Hong Hsieh, Pei-Yu Lai, Ching-Wei Huang, Yung-Hui Chung, Shang-Ming Huang, Kuo-Chiang Hsu","doi":"10.3390/ijms252313212","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), a leading neurodegenerative disorder, is closely associated with the accumulation of amyloid-beta (Aβ) peptides in the brain. The enzyme β-secretase (BACE1), pivotal in Aβ production, represents a promising therapeutic target for AD. While bioactive peptides derived from food protein hydrolysates have neuroprotective properties, their inhibitory effects on BACE1 remain largely unexplored. In this study, we evaluated the inhibitory potential of protein hydrolysates from gliadin, whey, and casein proteins prepared using bromelain, papain, and thermolysin. Through in vitro and cellular assays, bromelain-hydrolyzed gliadin (G-Bro) emerged as the most potent BACE1 inhibitor, with an IC<sub>50</sub> of 0.408 mg/mL. G-Bro significantly reduced BACE1 expression and amyloid precursor protein (APP) processing in N2a/PS/APP cell cultures, suggesting its potential to attenuate Aβ aggregation. The unique peptide profile of G-Bro likely contributes to its inhibitory effect, with proline residues disrupting β-sheets, lysine residues introducing positive charges that hinder aggregation, hydrophobic residues stabilizing binding interactions, and glutamine residues enhancing solubility and stability. These findings highlight gliadin hydrolysates, particularly G-Bro, as potential natural BACE1 inhibitors with applications in dietary interventions for AD prevention. However, further studies are warranted to elucidate specific peptide interactions and their bioactivity in neural pathways to better understand their therapeutic potential.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"25 23","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms252313212","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD), a leading neurodegenerative disorder, is closely associated with the accumulation of amyloid-beta (Aβ) peptides in the brain. The enzyme β-secretase (BACE1), pivotal in Aβ production, represents a promising therapeutic target for AD. While bioactive peptides derived from food protein hydrolysates have neuroprotective properties, their inhibitory effects on BACE1 remain largely unexplored. In this study, we evaluated the inhibitory potential of protein hydrolysates from gliadin, whey, and casein proteins prepared using bromelain, papain, and thermolysin. Through in vitro and cellular assays, bromelain-hydrolyzed gliadin (G-Bro) emerged as the most potent BACE1 inhibitor, with an IC50 of 0.408 mg/mL. G-Bro significantly reduced BACE1 expression and amyloid precursor protein (APP) processing in N2a/PS/APP cell cultures, suggesting its potential to attenuate Aβ aggregation. The unique peptide profile of G-Bro likely contributes to its inhibitory effect, with proline residues disrupting β-sheets, lysine residues introducing positive charges that hinder aggregation, hydrophobic residues stabilizing binding interactions, and glutamine residues enhancing solubility and stability. These findings highlight gliadin hydrolysates, particularly G-Bro, as potential natural BACE1 inhibitors with applications in dietary interventions for AD prevention. However, further studies are warranted to elucidate specific peptide interactions and their bioactivity in neural pathways to better understand their therapeutic potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
麸质蛋白水解物对 BACE1 表达和 APP 处理的抑制作用可防止 Aβ 聚合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
期刊最新文献
Inhibitory Effects of Gliadin Hydrolysates on BACE1 Expression and APP Processing to Prevent Aβ Aggregation. Diacylglycerol Kinases and Its Role in Lipid Metabolism and Related Diseases. A Diagnostic Approach in Large B-Cell Lymphomas According to the Fifth World Health Organization and International Consensus Classifications and a Practical Algorithm in Routine Practice. Discovery of a Small Molecule with an Inhibitory Role for RAB11. The Role of the Vaginal and Endometrial Microbiomes in Infertility and Their Impact on Pregnancy Outcomes in Light of Recent Literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1