M Bonfanti-Gris , E Ruales , MP Salido , F Martinez-Rus , M Özcan , G Pradies
{"title":"Artificial intelligence for dental implant classification and peri-implant pathology identification in 2D radiographs: A systematic review","authors":"M Bonfanti-Gris , E Ruales , MP Salido , F Martinez-Rus , M Özcan , G Pradies","doi":"10.1016/j.jdent.2024.105533","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This systematic review aimed to summarize and evaluate the available information regarding the performance of artificial intelligence on dental implant classification and peri-implant pathology identification in 2D radiographs.</div></div><div><h3>Data Sources</h3><div>Electronic databases (Medline, Embase, and Cochrane) were searched up to September 2024 for relevant observational studies and both randomized and controlled clinical trials. The search was limited to studies published in English from the last 7 years. Two reviewers independently conducted both study selection and data extraction. Risk of bias assessment was also performed individually by both operators using the Quality Assessment Diagnostic Tool (QUADAS-2).</div></div><div><h3>Study Selection</h3><div>Of the 1,465 records identified, 29 references were selected to perform qualitative analysis. The study characteristics were tabulated in a self-designed table. QUADAS-2 tool identified 10 and 15 studies to respectively have a high and an unclear risk of bias, while only four were categorized as low risk of bias. Overall, accuracy rates for dental implant classification ranged from 67 % to 99 %. Peri-implant pathology identification showed results with accuracy detection rates over 78,6 %.</div></div><div><h3>Conclusions</h3><div>While AI-based models, particularly convolutional neural networks, have shown high accuracy in dental implant classification and peri-implant pathology detection, several limitations must be addressed before widespread clinical application. More advanced AI techniques, such as Federated Learning should be explored to improve the generalizability and efficiency of these models in clinical practice.</div></div><div><h3>Clinical Significance</h3><div>AI-based models offer can and clinicians to accurately classify unknown dental implants and enable early detection of peri-implantitis, improving patient outcomes and streamline treatment planning.</div></div>","PeriodicalId":15585,"journal":{"name":"Journal of dentistry","volume":"153 ","pages":"Article 105533"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dentistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300571224007024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
This systematic review aimed to summarize and evaluate the available information regarding the performance of artificial intelligence on dental implant classification and peri-implant pathology identification in 2D radiographs.
Data Sources
Electronic databases (Medline, Embase, and Cochrane) were searched up to September 2024 for relevant observational studies and both randomized and controlled clinical trials. The search was limited to studies published in English from the last 7 years. Two reviewers independently conducted both study selection and data extraction. Risk of bias assessment was also performed individually by both operators using the Quality Assessment Diagnostic Tool (QUADAS-2).
Study Selection
Of the 1,465 records identified, 29 references were selected to perform qualitative analysis. The study characteristics were tabulated in a self-designed table. QUADAS-2 tool identified 10 and 15 studies to respectively have a high and an unclear risk of bias, while only four were categorized as low risk of bias. Overall, accuracy rates for dental implant classification ranged from 67 % to 99 %. Peri-implant pathology identification showed results with accuracy detection rates over 78,6 %.
Conclusions
While AI-based models, particularly convolutional neural networks, have shown high accuracy in dental implant classification and peri-implant pathology detection, several limitations must be addressed before widespread clinical application. More advanced AI techniques, such as Federated Learning should be explored to improve the generalizability and efficiency of these models in clinical practice.
Clinical Significance
AI-based models offer can and clinicians to accurately classify unknown dental implants and enable early detection of peri-implantitis, improving patient outcomes and streamline treatment planning.
期刊介绍:
The Journal of Dentistry has an open access mirror journal The Journal of Dentistry: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Dentistry is the leading international dental journal within the field of Restorative Dentistry. Placing an emphasis on publishing novel and high-quality research papers, the Journal aims to influence the practice of dentistry at clinician, research, industry and policy-maker level on an international basis.
Topics covered include the management of dental disease, periodontology, endodontology, operative dentistry, fixed and removable prosthodontics, dental biomaterials science, long-term clinical trials including epidemiology and oral health, technology transfer of new scientific instrumentation or procedures, as well as clinically relevant oral biology and translational research.
The Journal of Dentistry will publish original scientific research papers including short communications. It is also interested in publishing review articles and leaders in themed areas which will be linked to new scientific research. Conference proceedings are also welcome and expressions of interest should be communicated to the Editor.