Inversion for water column sound speed profile from acoustic travel times using empirical orthogonal functions.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS Journal of the Acoustical Society of America Pub Date : 2024-12-01 DOI:10.1121/10.0034622
Sreeram Radhakrishnan, Anilkumar K
{"title":"Inversion for water column sound speed profile from acoustic travel times using empirical orthogonal functions.","authors":"Sreeram Radhakrishnan, Anilkumar K","doi":"10.1121/10.0034622","DOIUrl":null,"url":null,"abstract":"<p><p>An acoustic propagation experiment was conducted in the western continental shelf of India (off Kollam, Kerala) in water depth of ∼71 m with seafloor consisting of hard sandy sediments. The multipath arrival times are obtained from peaks in acoustic impulse response measurements made on a single hydrophone for two source-receiver ranges of 245 m and 320 m. The arrival times are used for inverting the water column sound speed profile (SSP) utilizing the empirical orthogonal functions (EOFs), which can completely describe large datasets. The EOFs are generated from a seasonal dataset consisting of 12 SSPs collected once every month of the year at the same location. Inversion is formulated as an optimization problem and solved by employing the method of Differential Evolution Algorithm. A ray-theory based forward propagation model is implemented to model multipath arrival times with candidate SSPs, reconstructed from the EOFs as input for the two source receiver ranges. The objective function measures mismatch between the observed and modeled travel time estimates. The SSP estimated from modeled arrival times with EOFs as search space is found to agree reasonably well with in situ SSP for the two ranges.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4061-4072"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034622","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

An acoustic propagation experiment was conducted in the western continental shelf of India (off Kollam, Kerala) in water depth of ∼71 m with seafloor consisting of hard sandy sediments. The multipath arrival times are obtained from peaks in acoustic impulse response measurements made on a single hydrophone for two source-receiver ranges of 245 m and 320 m. The arrival times are used for inverting the water column sound speed profile (SSP) utilizing the empirical orthogonal functions (EOFs), which can completely describe large datasets. The EOFs are generated from a seasonal dataset consisting of 12 SSPs collected once every month of the year at the same location. Inversion is formulated as an optimization problem and solved by employing the method of Differential Evolution Algorithm. A ray-theory based forward propagation model is implemented to model multipath arrival times with candidate SSPs, reconstructed from the EOFs as input for the two source receiver ranges. The objective function measures mismatch between the observed and modeled travel time estimates. The SSP estimated from modeled arrival times with EOFs as search space is found to agree reasonably well with in situ SSP for the two ranges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用经验正交函数从声波传播时间反演水柱声速剖面。
声波传播实验在印度西部大陆架(喀拉拉邦Kollam附近)进行,水深约71 m,海底由坚硬的沙质沉积物组成。多径到达时间由单水听器在245米和320米两个源-接收器范围内的声脉冲响应测量峰值获得。利用经验正交函数(EOFs)反演水柱声速剖面(SSP),可以完整地描述大型数据集。EOFs是由12个ssp组成的季节性数据集生成的,这些ssp每年每月在同一地点收集一次。将反演表述为优化问题,采用微分进化算法求解。基于射线理论的前向传播模型实现了候选ssp的多径到达时间模型,从EOFs作为两个源接收器范围的输入重构。目标函数测量观测到的和模拟的旅行时间估计值之间的不匹配。在两个范围内,以EOFs为搜索空间的模型到达时间估计的SSP与原位SSP相当吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Implementing conditional term rewriting by graph rewriting
IF 1.1 4区 计算机科学Theoretical Computer SciencePub Date : 2001-07-06 DOI: 10.1016/S0304-3975(00)00209-7
Enno Ohlebusch
Complexity of Acyclic Term Graph Rewriting
IF 0 International Conference on Formal Structures for Computation and DeductionPub Date : 2016-06-22 DOI: 10.4230/LIPIcs.FSCD.2016.10
Martin Avanzini, G. Moser
Complexity Analysis by Rewriting
IF 0 Fuji International Symposium on Functional and Logic ProgrammingPub Date : 2008-04-14 DOI: 10.1007/978-3-540-78969-7_11
Martin Avanzini, G. Moser
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
期刊最新文献
A measuring instrument for the perceptual dimensions of road traffic noisea). Adaptation rate and persistence across multiple sets of spectral cues for sound localization. Extended high-frequency hearing and suprathreshold neural synchrony in the auditory brainstem. Mouth rhythm as a "packaging mechanism" of information in speech: A proof of concept. Unimodal speech perception predicts stable individual differences in audiovisual benefit for phonemes, words and sentencesa).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1