AAV-regulated Serpine2 overexpression promotes hair cell regeneration.

IF 6.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Therapy. Nucleic Acids Pub Date : 2024-11-17 eCollection Date: 2024-12-10 DOI:10.1016/j.omtn.2024.102396
Qiuhan Sun, Fangzhi Tan, Xinlin Wang, Xingliang Gu, Xin Chen, Yicheng Lu, Nianci Li, Xiaoyun Qian, Yinyi Zhou, Ziyu Zhang, Man Wang, Liyan Zhang, Busheng Tong, Jieyu Qi, Renjie Chai
{"title":"AAV-regulated <i>Serpine2</i> overexpression promotes hair cell regeneration.","authors":"Qiuhan Sun, Fangzhi Tan, Xinlin Wang, Xingliang Gu, Xin Chen, Yicheng Lu, Nianci Li, Xiaoyun Qian, Yinyi Zhou, Ziyu Zhang, Man Wang, Liyan Zhang, Busheng Tong, Jieyu Qi, Renjie Chai","doi":"10.1016/j.omtn.2024.102396","DOIUrl":null,"url":null,"abstract":"<p><p>Inner ear hair cell (HC) damage is irreversible in mammals, but it has been shown that supporting cells (SCs) have the potential to differentiate into HCs. <i>Serpine2</i>, a serine protease inhibitor, encodes protease nexin 1, and this has been suggested to be a factor that promotes HC regeneration. In this study, we overexpressed <i>Serpine2</i> in inner ear SCs cultured in two- and three-dimensional systems using the adeno-associated virus-inner ear (AAV-ie) vector, which promoted organoid expansion and HC differentiation. Overexpression of <i>Serpine2</i> in the mouse cochlea through the round window membrane (RWM) injection promoted SC proliferation and HC regeneration, and the regenerated HCs were found to be derived from Lgr5<sup>+</sup> SCs. Regenerated HCs have electrophysiological properties that are similar to those of native HCs. Notably, <i>Serpine2</i> overexpression promoted HC survival and restored hearing of neomycin-damaged mice. In conclusion, our findings indicate that <i>Serpine2</i> overexpression promotes HC regeneration and suggests that the utilization of inner ear progenitor cells in combination with AAVs might be a promising therapeutic target for hearing restoration.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"35 4","pages":"102396"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102396","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inner ear hair cell (HC) damage is irreversible in mammals, but it has been shown that supporting cells (SCs) have the potential to differentiate into HCs. Serpine2, a serine protease inhibitor, encodes protease nexin 1, and this has been suggested to be a factor that promotes HC regeneration. In this study, we overexpressed Serpine2 in inner ear SCs cultured in two- and three-dimensional systems using the adeno-associated virus-inner ear (AAV-ie) vector, which promoted organoid expansion and HC differentiation. Overexpression of Serpine2 in the mouse cochlea through the round window membrane (RWM) injection promoted SC proliferation and HC regeneration, and the regenerated HCs were found to be derived from Lgr5+ SCs. Regenerated HCs have electrophysiological properties that are similar to those of native HCs. Notably, Serpine2 overexpression promoted HC survival and restored hearing of neomycin-damaged mice. In conclusion, our findings indicate that Serpine2 overexpression promotes HC regeneration and suggests that the utilization of inner ear progenitor cells in combination with AAVs might be a promising therapeutic target for hearing restoration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
aav调节Serpine2过表达促进毛细胞再生。
哺乳动物的内耳毛细胞(HC)损伤是不可逆的,但有研究表明,支持细胞(SC)有分化为 HC 的潜力。丝氨酸蛋白酶抑制剂 Serpine2 编码蛋白酶 nexin 1,这被认为是促进 HC 再生的一个因素。在本研究中,我们使用腺相关病毒-内耳(AAV-ie)载体在二维和三维系统培养的内耳SC中过表达Serpine2,这促进了器官样组织的扩张和HC的分化。通过圆窗膜(RWM)注射在小鼠耳蜗中过表达Serpine2促进了SC增殖和HC再生,并发现再生的HC来自Lgr5+ SCs。再生的HC具有与原生HC相似的电生理特性。值得注意的是,Serpine2 的过表达促进了 HC 的存活并恢复了新霉素损伤小鼠的听力。总之,我们的研究结果表明,Serpine2 的过表达可促进 HC 的再生,并表明利用内耳祖细胞与 AAVs 结合可能是一种很有前景的听力恢复治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy. Nucleic Acids
Molecular Therapy. Nucleic Acids MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
15.40
自引率
1.10%
发文量
336
审稿时长
20 weeks
期刊介绍: Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.
期刊最新文献
Retraction Notice to: Promotion of tumor progression by exosome transmission of circular RNA circSKA3. siRNA tackles cancer: Immune checkpoint inhibitors and siRNA combinations. miR-125b differentially impacts mineralization in dexamethasone and calcium-treated human mesenchymal stem cells. Unleashing the TLR9-driven multilineage differentiation of myeloid leukemia cells in vivo. Extracellular viral microRNAs as biomarkers of virus infection in human cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1