{"title":"Infrapatellar Fat Pad-Derived Non-Cellular Products in Therapy for Musculoskeletal Diseases: A Scoping Review.","authors":"Aditya Fuad Robby Triangga, Widya Asmara, Rahadyan Magetsari, Indra Bachtiar, Dandy Ardhan Fazatamma, Paramita Ayu Saraswati, A Faiz Huwaidi, Yohanes Widodo Wirohadidjojo","doi":"10.52965/001c.125841","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The complex nature of musculoskeletal diseases and the limitations of existing treatments have driven researchers to explore innovative solutions, particularly those involving stem cells and their derivatives. The utilization of the IPFP as a source of MSC-derived non-cellular products for the treatment of musculoskeletal diseases has gained recognition in recent years. This study aimed to identify the progress of IPFP-derived acellular biologics use in the treatment of orthopedic conditions such as osteoarthritis and ligament and/or tendon injuries.</p><p><strong>Methods: </strong>A literature search was conducted through PubMed, Scopus and Google Scholar databases including studies over the past 10 years. This scoping review includes studies discussing the development of intercellular messenger signaling molecules (non-cellular products) in the form of exosomes, secretomes, and conditioned medium derived from the IPFP in the management of musculoskeletal diseases. The PRISMA-ScR guidelines were utilized in this review.</p><p><strong>Results: </strong>Six studies met the inclusion criteria. Most studies reported the beneficial anti-inflammatory effects of IPFP-derived noncellular products in musculoskeletal conditions. The effects of IPFP-derived exosomes, secretomes, and conditioned medium administration are mostly reported in microscopic changes through cellular and matrix changes. Additionally, quantitative analyses involved assessing levels of anti-inflammatory and pro-inflammatory markers, proteins, fatty acids, and gene expression.</p><p><strong>Conclusions: </strong>The use of IPFP-derived non-cellular products has shown significant promise in the regenerative therapy for musculoskeletal diseases. These agents have demonstrated beneficial effects, particularly in reducing inflammation, promoting cellular changes, and enhancing tissue regeneration. However, further research is needed to fully understand the characteristics and explore the potential applications of IPFP-derived non-cellular products in musculoskeletal cases.</p>","PeriodicalId":19669,"journal":{"name":"Orthopedic Reviews","volume":"16 ","pages":"125841"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orthopedic Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52965/001c.125841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The complex nature of musculoskeletal diseases and the limitations of existing treatments have driven researchers to explore innovative solutions, particularly those involving stem cells and their derivatives. The utilization of the IPFP as a source of MSC-derived non-cellular products for the treatment of musculoskeletal diseases has gained recognition in recent years. This study aimed to identify the progress of IPFP-derived acellular biologics use in the treatment of orthopedic conditions such as osteoarthritis and ligament and/or tendon injuries.
Methods: A literature search was conducted through PubMed, Scopus and Google Scholar databases including studies over the past 10 years. This scoping review includes studies discussing the development of intercellular messenger signaling molecules (non-cellular products) in the form of exosomes, secretomes, and conditioned medium derived from the IPFP in the management of musculoskeletal diseases. The PRISMA-ScR guidelines were utilized in this review.
Results: Six studies met the inclusion criteria. Most studies reported the beneficial anti-inflammatory effects of IPFP-derived noncellular products in musculoskeletal conditions. The effects of IPFP-derived exosomes, secretomes, and conditioned medium administration are mostly reported in microscopic changes through cellular and matrix changes. Additionally, quantitative analyses involved assessing levels of anti-inflammatory and pro-inflammatory markers, proteins, fatty acids, and gene expression.
Conclusions: The use of IPFP-derived non-cellular products has shown significant promise in the regenerative therapy for musculoskeletal diseases. These agents have demonstrated beneficial effects, particularly in reducing inflammation, promoting cellular changes, and enhancing tissue regeneration. However, further research is needed to fully understand the characteristics and explore the potential applications of IPFP-derived non-cellular products in musculoskeletal cases.
期刊介绍:
Orthopedic Reviews is an Open Access, online-only, peer-reviewed journal that considers articles concerned with any aspect of orthopedics, as well as diagnosis and treatment, trauma, surgical procedures, arthroscopy, sports medicine, rehabilitation, pediatric and geriatric orthopedics. All bone-related molecular and cell biology, genetics, pathophysiology and epidemiology papers are also welcome. The journal publishes original articles, brief reports, reviews and case reports of general interest.