Helena Boland, Adrian Endres, Ralf Kinscherf, Ralf Schubert, Beate Wilhelm, Hans Schwarzbach, Danny Jonigk, Peter Braubach, Gernot Rohde, Carla Bellinghausen
{"title":"Protective effect of interferon type I on barrier function of human airway epithelium during rhinovirus infections in vitro.","authors":"Helena Boland, Adrian Endres, Ralf Kinscherf, Ralf Schubert, Beate Wilhelm, Hans Schwarzbach, Danny Jonigk, Peter Braubach, Gernot Rohde, Carla Bellinghausen","doi":"10.1038/s41598-024-82516-2","DOIUrl":null,"url":null,"abstract":"<p><p>The airway epithelium provides a crucial barrier against infection with respiratory pathogens. This barrier can be impaired following viral infection, paving the way for bacterial superinfections. Type I interferons (IFNs) are important antiviral mediators, and inhaled formulations of these glycoproteins are considered a potential approach for the treatment of respiratory viral infections. To investigate if type I IFNs can also protect against virus-induced epithelial barrier dysfunction, differentiated primary bronchial epithelial cells were pre-treated with IFN-β1a and subsequently infected with human rhinovirus (HRV) for 24 to 72h. Moreover, to functionally assess the effects of IFN-β1a pre-treatment on barrier integrity, we conducted co-infection experiments, in which cells were initially infected with HRV, and superinfected with Streptococcus pneumoniae 24 to 72 h later. In untreated cells, HRV infection significantly damaged ZO-1 positive tight junctions and cilia, and transiently increased permeability, whereas the barrier of cultures pre-treated with IFN-β1a remained intact. In co-infection experiments, bacteria were able to penetrate deeper into the cell layers of HRV-infected cultures than into those of uninfected cells. IFN-β1a pre-treatment abrogated virus-induced damage to the epithelial barrier. Taken together, these data demonstrate a beneficial effect of IFN-β in protecting epithelial barrier function in addition to its antiviral effects.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30510"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82516-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The airway epithelium provides a crucial barrier against infection with respiratory pathogens. This barrier can be impaired following viral infection, paving the way for bacterial superinfections. Type I interferons (IFNs) are important antiviral mediators, and inhaled formulations of these glycoproteins are considered a potential approach for the treatment of respiratory viral infections. To investigate if type I IFNs can also protect against virus-induced epithelial barrier dysfunction, differentiated primary bronchial epithelial cells were pre-treated with IFN-β1a and subsequently infected with human rhinovirus (HRV) for 24 to 72h. Moreover, to functionally assess the effects of IFN-β1a pre-treatment on barrier integrity, we conducted co-infection experiments, in which cells were initially infected with HRV, and superinfected with Streptococcus pneumoniae 24 to 72 h later. In untreated cells, HRV infection significantly damaged ZO-1 positive tight junctions and cilia, and transiently increased permeability, whereas the barrier of cultures pre-treated with IFN-β1a remained intact. In co-infection experiments, bacteria were able to penetrate deeper into the cell layers of HRV-infected cultures than into those of uninfected cells. IFN-β1a pre-treatment abrogated virus-induced damage to the epithelial barrier. Taken together, these data demonstrate a beneficial effect of IFN-β in protecting epithelial barrier function in addition to its antiviral effects.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.