Anke Schumann, Ainhoa Martinez-Pizarro, Eva Richard, Christoph Schell, Anna Laura Kössinger, Karina A Zeyer, Stefan Tholen, Oliver Schilling, Michael Barry, Björn Neubauer, Michael Köttgen, Luciana Hannibal, Lourdes R Desviat, Ute Spiekerkötter
{"title":"Renal phenotyping in a hypomorphic murine model of propionic aciduria reveals common pathomechanisms in organic acidurias.","authors":"Anke Schumann, Ainhoa Martinez-Pizarro, Eva Richard, Christoph Schell, Anna Laura Kössinger, Karina A Zeyer, Stefan Tholen, Oliver Schilling, Michael Barry, Björn Neubauer, Michael Köttgen, Luciana Hannibal, Lourdes R Desviat, Ute Spiekerkötter","doi":"10.1038/s41598-024-79572-z","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in the mitochondrial enzyme propionyl-CoA carboxylase (PCC) cause propionic aciduria (PA). Chronic kidney disease (CKD) is a known long-term complication. However, good metabolic control and standard therapy fail to prevent CKD. The pathophysiological mechanisms of CKD are unclear. We investigated the renal phenotype of a hypomorphic murine PA model (Pcca<sup>-/-</sup>(A138T)) to identify CKD-driving mechanisms. Pcca<sup>-/-</sup>(A138T) mice show elevated retention parameters and express markers of kidney damage progressing with time. Morphological assessment of the Pcca<sup>-/-</sup>(A138T) mouse kidneys indicated partial flattening of tubular epithelial cells and focal tubular-cystic dilation. We observed altered renal mitochondrial ultrastructure and mechanisms acting against oxidative stress were active. LC-MS/MS analysis confirmed disease-specific metabolic signatures and revealed disturbances in mitochondrial energy generation via the TCA cycle. Our investigations revealed altered mitochondrial networks shifted towards fission and a marked reduction of mitophagy. We observed a steep reduction of PGC-1-α, the key mediator modulating mitochondrial functions and a counter actor of mitochondrial fission. Our results suggest that impairment of mitochondrial homeostasis and quality control are involved in CKD development in PA. Therapeutic targeting of the identified pathways might help to ameliorate CKD in addition to the current treatment strategies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30478"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-79572-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations in the mitochondrial enzyme propionyl-CoA carboxylase (PCC) cause propionic aciduria (PA). Chronic kidney disease (CKD) is a known long-term complication. However, good metabolic control and standard therapy fail to prevent CKD. The pathophysiological mechanisms of CKD are unclear. We investigated the renal phenotype of a hypomorphic murine PA model (Pcca-/-(A138T)) to identify CKD-driving mechanisms. Pcca-/-(A138T) mice show elevated retention parameters and express markers of kidney damage progressing with time. Morphological assessment of the Pcca-/-(A138T) mouse kidneys indicated partial flattening of tubular epithelial cells and focal tubular-cystic dilation. We observed altered renal mitochondrial ultrastructure and mechanisms acting against oxidative stress were active. LC-MS/MS analysis confirmed disease-specific metabolic signatures and revealed disturbances in mitochondrial energy generation via the TCA cycle. Our investigations revealed altered mitochondrial networks shifted towards fission and a marked reduction of mitophagy. We observed a steep reduction of PGC-1-α, the key mediator modulating mitochondrial functions and a counter actor of mitochondrial fission. Our results suggest that impairment of mitochondrial homeostasis and quality control are involved in CKD development in PA. Therapeutic targeting of the identified pathways might help to ameliorate CKD in addition to the current treatment strategies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.