Chunsheng He, Zhisong Qiu, Feng Jin, Lifang Weng, Libin Chen, Lijuan Wang, Sicong Jiang, Jin Shi
{"title":"Electrochemical immunoassay for gastric cancer biomarker pepsinogen I detection based on PdAgPt/MoS<sub>2</sub>.","authors":"Chunsheng He, Zhisong Qiu, Feng Jin, Lifang Weng, Libin Chen, Lijuan Wang, Sicong Jiang, Jin Shi","doi":"10.1088/1748-605X/ad9fc7","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel electrochemical immunosensor for the detection of pepsinogen I, a potential biomarker for gastric cancer, based on a unique PdAgPt/MoS<sub>2</sub>nanocomposite. The key innovation lies in the synergistic combination of trimetallic PdAgPt nanoparticles with MoS<sub>2</sub>nanoflowers, which has not been previously reported for pepsinogen I detection. This hybrid material demonstrates exceptional electron transfer properties and a significantly larger electroactive surface area compared to conventional materials. The optimized immunosensor exhibits superior performance metrics: a wide linear range of 0.5-200 ng ml<sup>-1</sup>and an unprecedented low detection limit of 0.173 ng ml<sup>-1</sup>, surpassing existing detection methods. The sensor shows remarkable selectivity with interfering substances exhibiting relative responses below 5%, excellent reproducibility (RSD 3.8%), and outstanding stability (95.6% retention after 30 d). Analysis of spiked serum samples resulted in recoveries ranging from 96.8% to 104.5%, demonstrating the sensor's practical applicability for early gastric cancer screening. This work represents a significant advancement in developing rapid, sensitive, and cost-effective diagnostic tools for gastric cancer surveillance.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad9fc7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel electrochemical immunosensor for the detection of pepsinogen I, a potential biomarker for gastric cancer, based on a unique PdAgPt/MoS2nanocomposite. The key innovation lies in the synergistic combination of trimetallic PdAgPt nanoparticles with MoS2nanoflowers, which has not been previously reported for pepsinogen I detection. This hybrid material demonstrates exceptional electron transfer properties and a significantly larger electroactive surface area compared to conventional materials. The optimized immunosensor exhibits superior performance metrics: a wide linear range of 0.5-200 ng ml-1and an unprecedented low detection limit of 0.173 ng ml-1, surpassing existing detection methods. The sensor shows remarkable selectivity with interfering substances exhibiting relative responses below 5%, excellent reproducibility (RSD 3.8%), and outstanding stability (95.6% retention after 30 d). Analysis of spiked serum samples resulted in recoveries ranging from 96.8% to 104.5%, demonstrating the sensor's practical applicability for early gastric cancer screening. This work represents a significant advancement in developing rapid, sensitive, and cost-effective diagnostic tools for gastric cancer surveillance.