Ziyuan Liu , Ming-Chun Zhao , Dengfeng Yin , Ying-Chao Zhao , Andrej Atrens
{"title":"Bio-functional niobium-based metallic biomaterials: Exploring their physicomechanical properties, biological significance, and implant applications","authors":"Ziyuan Liu , Ming-Chun Zhao , Dengfeng Yin , Ying-Chao Zhao , Andrej Atrens","doi":"10.1016/j.actbio.2024.12.036","DOIUrl":null,"url":null,"abstract":"<div><div>The significance of biomedical applications of bio-functional niobium (Nb)-based metallic biomaterials is underscored by their potential utilization in implant application. Nb-based metallic materials present reliable physicomechanical and biological properties, thus represent materials highly suitable for implant application. This review provides an overview on the advances of pure niobium and Nb-based metallic materials as implant materials over the past 20 years, and highlights the advantages of Nb-based metallic biomaterials for implant application in terms of their physicomechanical properties, corrosion resistance in biological media, magnetic resonance imaging (MRI) compatibility, cell compatibility, blood compatibility, osteogenesis, and bioactivity. An introduction is provided for the production and processing techniques for Nb-based metallic biomaterials, including traditional melting processes like vacuum arc remelting, additive manufacturing like selective laser melting (SLM), electron beam melting (EBM), spark plasma sintering (SPS), and severe plastic deformation like equal channel angular pressing (ECAP), multi-axial forging (MAF), high pressure torsion (HPT), as well as their physicomechanical properties and implant application. Also suggested are the critical issues, challenges, and prospects in the further development of Nb-based metallic biomaterials for implant applications.</div></div><div><h3>Statement of significance</h3><div>Nb-based biomaterials have gained significant interest for bioimplantable scaffolds because of their appropriate mechanical characteristics and biocompatibility. No prior work has been published specifically reviewing bio-functional Nb-based biomaterials for exploring their physicomechanical properties, biological significance, and implant applications. This review provides an overview on the advances of niobium and Nb-based materials as implant materials over the past 20 years, and highlights the advantages of Nb-based biomaterials for implant application. An introduction is provided for the production and processing techniques for Nb-based biomaterials, as well as their physicomechanical properties and implant application. Also suggested are the critical issues, challenges, and prospects in the further development of Nb-based biomaterials for implant applications.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"192 ","pages":"Pages 1-27"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124007554","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The significance of biomedical applications of bio-functional niobium (Nb)-based metallic biomaterials is underscored by their potential utilization in implant application. Nb-based metallic materials present reliable physicomechanical and biological properties, thus represent materials highly suitable for implant application. This review provides an overview on the advances of pure niobium and Nb-based metallic materials as implant materials over the past 20 years, and highlights the advantages of Nb-based metallic biomaterials for implant application in terms of their physicomechanical properties, corrosion resistance in biological media, magnetic resonance imaging (MRI) compatibility, cell compatibility, blood compatibility, osteogenesis, and bioactivity. An introduction is provided for the production and processing techniques for Nb-based metallic biomaterials, including traditional melting processes like vacuum arc remelting, additive manufacturing like selective laser melting (SLM), electron beam melting (EBM), spark plasma sintering (SPS), and severe plastic deformation like equal channel angular pressing (ECAP), multi-axial forging (MAF), high pressure torsion (HPT), as well as their physicomechanical properties and implant application. Also suggested are the critical issues, challenges, and prospects in the further development of Nb-based metallic biomaterials for implant applications.
Statement of significance
Nb-based biomaterials have gained significant interest for bioimplantable scaffolds because of their appropriate mechanical characteristics and biocompatibility. No prior work has been published specifically reviewing bio-functional Nb-based biomaterials for exploring their physicomechanical properties, biological significance, and implant applications. This review provides an overview on the advances of niobium and Nb-based materials as implant materials over the past 20 years, and highlights the advantages of Nb-based biomaterials for implant application. An introduction is provided for the production and processing techniques for Nb-based biomaterials, as well as their physicomechanical properties and implant application. Also suggested are the critical issues, challenges, and prospects in the further development of Nb-based biomaterials for implant applications.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.