{"title":"Efficient tensor networks for control-enhanced quantum metrology","authors":"Qiushi Liu, Yuxiang Yang","doi":"10.22331/q-2024-12-18-1571","DOIUrl":null,"url":null,"abstract":"Optimized quantum control can enhance the performance and noise resilience of quantum metrology. However, the optimization quickly becomes intractable when multiple control operations are applied sequentially. In this work, we propose efficient tensor network algorithms for optimizing strategies of quantum metrology enhanced by a long sequence of control operations. Our approach covers a general and practical scenario where the experimenter applies $N-1$ interleaved control operations between $N$ queries of the channel to estimate and uses no or bounded ancilla. Tailored to different experimental capabilities, these control operations can be generic quantum channels or variational unitary gates. Numerical experiments show that our algorithm has a good performance in optimizing the metrological strategy for as many as $N=100$ queries. In particular, our algorithm identifies a strategy that can outperform the state-of-the-art strategy when $N$ is finite but large.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"23 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-12-18-1571","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optimized quantum control can enhance the performance and noise resilience of quantum metrology. However, the optimization quickly becomes intractable when multiple control operations are applied sequentially. In this work, we propose efficient tensor network algorithms for optimizing strategies of quantum metrology enhanced by a long sequence of control operations. Our approach covers a general and practical scenario where the experimenter applies $N-1$ interleaved control operations between $N$ queries of the channel to estimate and uses no or bounded ancilla. Tailored to different experimental capabilities, these control operations can be generic quantum channels or variational unitary gates. Numerical experiments show that our algorithm has a good performance in optimizing the metrological strategy for as many as $N=100$ queries. In particular, our algorithm identifies a strategy that can outperform the state-of-the-art strategy when $N$ is finite but large.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.