Swarm-Based Gradient Descent Meets Simulated Annealing

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Numerical Analysis Pub Date : 2024-12-17 DOI:10.1137/24m1657808
Zhiyan Ding, Martin Guerra, Qin Li, Eitan Tadmor
{"title":"Swarm-Based Gradient Descent Meets Simulated Annealing","authors":"Zhiyan Ding, Martin Guerra, Qin Li, Eitan Tadmor","doi":"10.1137/24m1657808","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2745-2781, December 2024. <br/> Abstract. We introduce a novel method, called swarm-based simulated annealing (SSA), for nonconvex optimization which is at the interface between the swarm-based gradient-descent (SBGD) [J. Lu et al., arXiv:2211.17157; E. Tadmor and A. Zenginoglu, Acta Appl. Math., 190 (2024)] and simulated annealing (SA) [V. Cerny, J. Optim. Theory Appl., 45 (1985), pp. 41–51; S. Kirkpatrick et al., Science, 220 (1983), pp. 671–680; S. Geman and C.-R. Hwang, SIAM J. Control Optim., 24 (1986), pp. 1031–1043]. Similarly to SBGD, we introduce a swarm of agents, each identified with a position, [math] and mass [math], to explore the ambient space. Similarly to SA, the agents proceed in the gradient descent direction, and are subject to Brownian motion. The annealing rate, however, is dictated by a decreasing function of their mass. As a consequence, instead of the SA protocol for time-decreasing temperature, here the swarm decides how to “cool down” agents, depending on their own accumulated mass. The dynamics of masses is coupled with the dynamics of positions: agents at higher ground transfer (part of) their mass to those at lower ground. Consequently, the resulting SSA optimizer is dynamically divided between heavier, cooler agents viewed as “leaders” and lighter, warmer agents viewed as “explorers.” Mean-field convergence analysis and benchmark optimizations demonstrate the effectiveness of the SSA method as a multidimensional global optimizer.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1657808","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2745-2781, December 2024.
Abstract. We introduce a novel method, called swarm-based simulated annealing (SSA), for nonconvex optimization which is at the interface between the swarm-based gradient-descent (SBGD) [J. Lu et al., arXiv:2211.17157; E. Tadmor and A. Zenginoglu, Acta Appl. Math., 190 (2024)] and simulated annealing (SA) [V. Cerny, J. Optim. Theory Appl., 45 (1985), pp. 41–51; S. Kirkpatrick et al., Science, 220 (1983), pp. 671–680; S. Geman and C.-R. Hwang, SIAM J. Control Optim., 24 (1986), pp. 1031–1043]. Similarly to SBGD, we introduce a swarm of agents, each identified with a position, [math] and mass [math], to explore the ambient space. Similarly to SA, the agents proceed in the gradient descent direction, and are subject to Brownian motion. The annealing rate, however, is dictated by a decreasing function of their mass. As a consequence, instead of the SA protocol for time-decreasing temperature, here the swarm decides how to “cool down” agents, depending on their own accumulated mass. The dynamics of masses is coupled with the dynamics of positions: agents at higher ground transfer (part of) their mass to those at lower ground. Consequently, the resulting SSA optimizer is dynamically divided between heavier, cooler agents viewed as “leaders” and lighter, warmer agents viewed as “explorers.” Mean-field convergence analysis and benchmark optimizations demonstrate the effectiveness of the SSA method as a multidimensional global optimizer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIAM 数值分析期刊》,第 62 卷,第 6 期,第 2745-2781 页,2024 年 12 月。 摘要我们介绍了一种用于非凸优化的新方法,称为基于蜂群的模拟退火(SSA),它处于基于蜂群的梯度下降(SBGD)[J. Lu et al.Lu et al., arXiv:2211.17157; E. Tadmor and A. Zenginoglu, Acta Appl.Cerny, J. Optim.Theory Appl., 45 (1985), pp.控制优化》,24 (1986),第 1031-1043 页]。与 SBGD 类似,我们引入了一个代理群,每个代理都有一个位置[math]和质量[math],以探索环境空间。与 SA 类似,代理群沿着梯度下降方向前进,并受布朗运动的影响。不过,退火率是由质量的递减函数决定的。因此,与 SA 的温度随时间递减的协议不同,在这里,虫群根据其自身累积的质量来决定如何 "冷却 "虫体。质量的动态与位置的动态相耦合:处于较高位置的虫群会将(部分)质量转移给处于较低位置的虫群。因此,由此产生的 SSA 优化器被动态地划分为:较重、较冷的代理被视为 "领导者",较轻、较热的代理被视为 "探索者"。平均场收敛分析和基准优化证明了 SSA 方法作为多维全局优化器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
期刊最新文献
Erratum: Multidimensional Sum-Up Rounding for Elliptic Control Systems Swarm-Based Gradient Descent Meets Simulated Annealing Corrigendum: A New Lagrange Multiplier Approach for Constructing Structure-Preserving Schemes, II. Bound Preserving Multiple Relaxation Exponential Runge–Kutta Methods for the Nonlinear Schrödinger Equation Stable and Accurate Least Squares Radial Basis Function Approximations on Bounded Domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1