A Meta-analysis of STEM Integration on Student Academic Achievement

IF 2.2 3区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Research in Science Education Pub Date : 2024-12-17 DOI:10.1007/s11165-024-10216-y
Shuqi Zhou, Zehua Dong, Hui Hui Wang, Ming Ming Chiu
{"title":"A Meta-analysis of STEM Integration on Student Academic Achievement","authors":"Shuqi Zhou, Zehua Dong, Hui Hui Wang, Ming Ming Chiu","doi":"10.1007/s11165-024-10216-y","DOIUrl":null,"url":null,"abstract":"<p>This meta-analysis examined whether learning outcomes differ (a) for STEM integration versus traditional instruction and (b) across STEM integration implementations. Based on 79 effect sizes from 40 studies of 15,577 students, those learning via STEM integration outperformed other students on academic achievement tests (<i>g</i> = 0.661; 95% CI [0.548, 0.774]). The effect sizes of STEM integration on achievement were largest for context integration, smaller for content integration, and smallest for tool integration. They were largest for inquiry-based learning, and progressively smaller for problem-based learning, designed-based learning, and project-based learning. They were largest for STEM subject achievement, and progressively smaller for science achievement, math achievement, and engineering achievement. They were larger for collectivist countries than for individualistic countries. Engineering design skills and grade level were not significant moderators. These results can inform integrated STEM instructional design and improve student learning.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":"23 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-024-10216-y","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

This meta-analysis examined whether learning outcomes differ (a) for STEM integration versus traditional instruction and (b) across STEM integration implementations. Based on 79 effect sizes from 40 studies of 15,577 students, those learning via STEM integration outperformed other students on academic achievement tests (g = 0.661; 95% CI [0.548, 0.774]). The effect sizes of STEM integration on achievement were largest for context integration, smaller for content integration, and smallest for tool integration. They were largest for inquiry-based learning, and progressively smaller for problem-based learning, designed-based learning, and project-based learning. They were largest for STEM subject achievement, and progressively smaller for science achievement, math achievement, and engineering achievement. They were larger for collectivist countries than for individualistic countries. Engineering design skills and grade level were not significant moderators. These results can inform integrated STEM instructional design and improve student learning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STEM 整合对学生学业成绩的元分析
这项荟萃分析研究了(a) STEM 整合教学与传统教学的学习效果是否不同,(b) STEM 整合教学的实施效果是否不同。根据对 15,577 名学生进行的 40 项研究得出的 79 个效应大小,通过 STEM 整合学习的学生在学业成绩测试中优于其他学生(g = 0.661;95% CI [0.548,0.774])。STEM 整合对成绩的影响大小在情境整合中最大,在内容整合中较小,在工具整合中最小。以探究为基础的学习效果最大,以问题为基础的学习、以设计为基础的学习和以项目为基础的学习的效果逐渐减小。在 STEM 学科成绩方面,它们的差距最大,在科学成绩、数学成绩和工程学成绩方面,它们的差距逐渐缩小。集体主义国家的差距大于个人主义国家。工程设计技能和年级并不是重要的调节因素。这些结果可以为 STEM 综合教学设计提供参考,并改善学生的学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research in Science Education
Research in Science Education EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
6.40
自引率
8.70%
发文量
45
期刊介绍: 2020 Five-Year Impact Factor: 4.021 2020 Impact Factor: 5.439 Ranking: 107/1319 (Education) – Scopus 2020 CiteScore 34.7 – Scopus Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership. RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal. You should consider submitting your manscript to RISE if your research: Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and Advances our knowledge in science education research rather than reproducing what we already know. RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted. The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers. Empircal contributions are: Theoretically or conceptually grounded; Relevant to science education theory and practice; Highlight limitations of the study; and Identify possible future research opportunities. From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks. Before you submit your manuscript to RISE, please consider the following checklist. Your paper is: No longer than 6000 words, including references. Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability; Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education; Internationalised in the sense that your work has relevance beyond your context to a broader audience; and Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE. While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.
期刊最新文献
Effects of 6E-Based Learning on Students’ Academic Achievement, Higher-Order Thinking Skills, and Attitudes Towards STEM Using the History of Research on DNA to Teach NOS A Meta-analysis of STEM Integration on Student Academic Achievement Scientific Toys in Early Childhood Settings: Teaching and Learning About Light and Shadows Fostering Knowledge and Awareness about Healthy Nutrition through Science-based Educational Escape Games
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1