An Efficient and Accessible Hectogram-Scale Synthesis for the Selective O-GlcNAcase Inhibitor Thiamet-G

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Omega Pub Date : 2024-12-08 DOI:10.1021/acsomega.4c0614110.1021/acsomega.4c06141
Viktor Holicek, Matthew Deen, Sandeep Bhosale, Roger A. Ashmus and David J. Vocadlo*, 
{"title":"An Efficient and Accessible Hectogram-Scale Synthesis for the Selective O-GlcNAcase Inhibitor Thiamet-G","authors":"Viktor Holicek,&nbsp;Matthew Deen,&nbsp;Sandeep Bhosale,&nbsp;Roger A. Ashmus and David J. Vocadlo*,&nbsp;","doi":"10.1021/acsomega.4c0614110.1021/acsomega.4c06141","DOIUrl":null,"url":null,"abstract":"<p >Altered levels of intracellular protein glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) have emerged as being involved in various cancers and neurodegenerative diseases. OGA inhibitors have proven critically useful as tools to help understand the roles of O-GlcNAc, yet accessing large quantities of inhibitors necessary for many animal studies remains a challenge. Herein is described a scalable method to produce Thiamet-G, a potent, selective, and widely used brain-permeable OGA inhibitor. This synthetic route begins with inexpensive precursor, requires no column chromatography, employs simple nontoxic reagents, and in a single campaign can furnish several hundred grams of crystalline Thiamet-G in an overall yield of 44% over six steps.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49223–49228 49223–49228"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c06141","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c06141","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Altered levels of intracellular protein glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) have emerged as being involved in various cancers and neurodegenerative diseases. OGA inhibitors have proven critically useful as tools to help understand the roles of O-GlcNAc, yet accessing large quantities of inhibitors necessary for many animal studies remains a challenge. Herein is described a scalable method to produce Thiamet-G, a potent, selective, and widely used brain-permeable OGA inhibitor. This synthetic route begins with inexpensive precursor, requires no column chromatography, employs simple nontoxic reagents, and in a single campaign can furnish several hundred grams of crystalline Thiamet-G in an overall yield of 44% over six steps.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效易得的选择性 O-GlcNA 酶抑制剂 Thiamet-G 的谱图级合成方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Tumor-Targeted Magnetic Micelles for Magnetic Resonance Imaging, Drug Delivery, and Overcoming Multidrug Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1