Laboratory Studies on the Influence of Hydrogen on Titan-like Photochemistry

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ACS Earth and Space Chemistry Pub Date : 2024-12-05 DOI:10.1021/acsearthspacechem.4c0010210.1021/acsearthspacechem.4c00102
Melissa S. Ugelow*, Scott T. Wieman, Madeline C. R. Schwarz, Victoria Da Poian, Jennifer C. Stern and Melissa G. Trainer, 
{"title":"Laboratory Studies on the Influence of Hydrogen on Titan-like Photochemistry","authors":"Melissa S. Ugelow*,&nbsp;Scott T. Wieman,&nbsp;Madeline C. R. Schwarz,&nbsp;Victoria Da Poian,&nbsp;Jennifer C. Stern and Melissa G. Trainer,&nbsp;","doi":"10.1021/acsearthspacechem.4c0010210.1021/acsearthspacechem.4c00102","DOIUrl":null,"url":null,"abstract":"<p >Laboratory investigations of photochemical reactions in simulated Titan-like atmospheric systems provide insight into the formation of gas and aerosol products and the influence of different environmental parameters on the types of organic molecules generated. Studying the gas-phase products as a function of reaction time provides further insight into the reaction pathways that lead to organic production. The stable isotopes in the reactants and products serve as tracers and help to disentangle these reaction pathways. We report a time study on the chemical composition and relative abundance of the evolved gas-phase products formed by far-ultraviolet reactions between 5% CH<sub>4</sub> and N<sub>2</sub> in a closed system. Two experimental setups are used, where one fully removes hydrogen from the experimental system using a palladium membrane (hydrogen-poor experiments) and the other does not remove hydrogen during the experiment (hydrogen-rich experiments). Carbon isotope values (δ<sup>13</sup>C) of CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, and C<sub>3</sub>H<sub>8</sub> are also reported and are used, along with the gas-phase composition and relative abundance measurements, to constrain the chemical reactions occurring during our experiments. The gas-phase products C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>8</sub>, <i>n</i>-C<sub>4</sub>H<sub>10</sub>, iso-C<sub>4</sub>H<sub>10</sub>, <i>n</i>-C<sub>5</sub>H<sub>12</sub>, iso-C<sub>5</sub>H<sub>12</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, HCN, and CH<sub>3</sub>CN were detected, with some variations between both sets of experiments. The hydrogen-poor experiments highlight the importance of hydrogen in the formation of HCN, <i>n</i>-C<sub>5</sub>H<sub>12</sub>, iso-C<sub>5</sub>H<sub>12</sub>, and CH<sub>3</sub>CN. By monitoring the chemical composition and the carbon isotopic ratios of the gas phase during CH<sub>4</sub>/N<sub>2</sub> photochemistry, especially under a hydrogen-poor and hydrogen-rich environment, the photochemical reaction pathways and the influence of hydrogen on these pathways in a Titan-like atmosphere can be better understood.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"8 12","pages":"2362–2371 2362–2371"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsearthspacechem.4c00102","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00102","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laboratory investigations of photochemical reactions in simulated Titan-like atmospheric systems provide insight into the formation of gas and aerosol products and the influence of different environmental parameters on the types of organic molecules generated. Studying the gas-phase products as a function of reaction time provides further insight into the reaction pathways that lead to organic production. The stable isotopes in the reactants and products serve as tracers and help to disentangle these reaction pathways. We report a time study on the chemical composition and relative abundance of the evolved gas-phase products formed by far-ultraviolet reactions between 5% CH4 and N2 in a closed system. Two experimental setups are used, where one fully removes hydrogen from the experimental system using a palladium membrane (hydrogen-poor experiments) and the other does not remove hydrogen during the experiment (hydrogen-rich experiments). Carbon isotope values (δ13C) of CH4, C2H6, and C3H8 are also reported and are used, along with the gas-phase composition and relative abundance measurements, to constrain the chemical reactions occurring during our experiments. The gas-phase products C2H6, C3H8, n-C4H10, iso-C4H10, n-C5H12, iso-C5H12, C2H2, C2H4, HCN, and CH3CN were detected, with some variations between both sets of experiments. The hydrogen-poor experiments highlight the importance of hydrogen in the formation of HCN, n-C5H12, iso-C5H12, and CH3CN. By monitoring the chemical composition and the carbon isotopic ratios of the gas phase during CH4/N2 photochemistry, especially under a hydrogen-poor and hydrogen-rich environment, the photochemical reaction pathways and the influence of hydrogen on these pathways in a Titan-like atmosphere can be better understood.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Kinetics and Oligomer Products of the Multiphase Reactions of Hydroxyacetone with Atmospheric Amines, Ammonium Sulfate, and Cloud Processing Laboratory Studies on the Influence of Hydrogen on Titan-like Photochemistry A Comparative 1H –29Si Cross-Polarization Solid-State Nuclear Magnetic Resonance Study of Opal-A and Opal-CT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1