Area-Addressable ZnO Nanowire-Based Cold Cathode Transparent Flat-Panel X-ray Sources for Visual Intraoperative Radiotherapy

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-11-21 DOI:10.1021/acsanm.4c0497910.1021/acsanm.4c04979
Song Kang, Guofu Zhang, Runze Zhan, Yuan Xu, Linghong Zhou, Shaozhi Deng, Ningsheng Xu and Jun Chen*, 
{"title":"Area-Addressable ZnO Nanowire-Based Cold Cathode Transparent Flat-Panel X-ray Sources for Visual Intraoperative Radiotherapy","authors":"Song Kang,&nbsp;Guofu Zhang,&nbsp;Runze Zhan,&nbsp;Yuan Xu,&nbsp;Linghong Zhou,&nbsp;Shaozhi Deng,&nbsp;Ningsheng Xu and Jun Chen*,&nbsp;","doi":"10.1021/acsanm.4c0497910.1021/acsanm.4c04979","DOIUrl":null,"url":null,"abstract":"<p >X-ray intraoperative radiotherapy (IORT) is an important method for treating specific tumors. Area-addressable transparent flat-panel X-ray source can achieve selective-area radiotherapy and direct optical imaging guide, which could enhance the capability of the current IORT technique and has not been reported to date. In this paper, an area-addressable transparent flat-panel X-ray source was realized using zinc oxide (ZnO) nanowire field emitter arrays (FEAs) and an indium tin oxide (ITO) transparent anode. Planar-gate ZnO nanowire FEAs were fabricated and demonstrated a good addressing performance and uniform electron emission characteristics. A maximum anode current density of 884 μA/cm<sup>2</sup> was measured at one area under gate-addressed emission conditions, and the current fluctuation was approximately 5.8% in 2.5 h. The planar-gated ZnO nanowire FEAs were applied in the transparent flat-panel X-ray source. A radiation dose rate of 5.76 mGy/s was measured at the anode surface of the flat-panel X-ray source under the application of 40 kV anode voltages. The reported X-ray source device has potential applications in advanced intraoperative radiotherapy.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"26988–26995 26988–26995"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04979","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray intraoperative radiotherapy (IORT) is an important method for treating specific tumors. Area-addressable transparent flat-panel X-ray source can achieve selective-area radiotherapy and direct optical imaging guide, which could enhance the capability of the current IORT technique and has not been reported to date. In this paper, an area-addressable transparent flat-panel X-ray source was realized using zinc oxide (ZnO) nanowire field emitter arrays (FEAs) and an indium tin oxide (ITO) transparent anode. Planar-gate ZnO nanowire FEAs were fabricated and demonstrated a good addressing performance and uniform electron emission characteristics. A maximum anode current density of 884 μA/cm2 was measured at one area under gate-addressed emission conditions, and the current fluctuation was approximately 5.8% in 2.5 h. The planar-gated ZnO nanowire FEAs were applied in the transparent flat-panel X-ray source. A radiation dose rate of 5.76 mGy/s was measured at the anode surface of the flat-panel X-ray source under the application of 40 kV anode voltages. The reported X-ray source device has potential applications in advanced intraoperative radiotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可视术中放疗的面积可寻址氧化锌纳米线冷阴极透明平板 X 射线源
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information ACS Applied Materials & Interfaces Family Early Career Forum 2024 Enhanced Magnetic Properties in a Copper β-Diketonato Complex Film Stabilized by I··· I Interactions on a Graphite Surface at 2 K for Molecular Spintronics Carbon Fiber/Methyltrimethoxysilane/Graphene Composite Aerogel for High-Strength Strain Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1