Phenylboronic Acid-Modified pH/Glucose Dual-Responsive Polymeric Micelles for Targeted Anticancer Drug Delivery

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-11-20 DOI:10.1021/acsanm.4c0467910.1021/acsanm.4c04679
Sifang Zhao, Fengjiao Chen, Xianwu Chen, Hongze Liang, Hui Tan* and Lingling Zhao*, 
{"title":"Phenylboronic Acid-Modified pH/Glucose Dual-Responsive Polymeric Micelles for Targeted Anticancer Drug Delivery","authors":"Sifang Zhao,&nbsp;Fengjiao Chen,&nbsp;Xianwu Chen,&nbsp;Hongze Liang,&nbsp;Hui Tan* and Lingling Zhao*,&nbsp;","doi":"10.1021/acsanm.4c0467910.1021/acsanm.4c04679","DOIUrl":null,"url":null,"abstract":"<p >The tumor microenvironment is characterized by several hallmarks such as an acidic pH and high glucose levels in tumor tissues and increased expression of specific proteins and/or sugars on the surface of tumor cells. These unique hallmarks of tumors can be considered in the design of multifunctional drug delivery nanosystems to improve the efficiency of tumor therapy through targeted drug delivery and specific drug release in the tumor tissue. In this study, phenylboronic acid-modified pH- and glucose-responsive polymer micelles were designed for the targeted delivery of anticancer drugs. The polymeric micelles demonstrated prolonged and pH/glucose-triggered drug release and enhanced cellular internalization by B16F10 cells through a receptor-mediated endocytosis pathway. The polymeric micellar system could inhibit the proliferation of B16F10 cells with IC<sub>50</sub> values lower than those of unmodified micelles. In addition, the polymeric micellar system could markedly suppress cell migration, colony formation, and invasion and promote the apoptosis of B16F10 cells, indicating good anticancer efficiency in vitro. Therefore, this polymeric nanocarrier provides a potential platform for targeted anticancer therapy.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"26813–26824 26813–26824"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04679","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The tumor microenvironment is characterized by several hallmarks such as an acidic pH and high glucose levels in tumor tissues and increased expression of specific proteins and/or sugars on the surface of tumor cells. These unique hallmarks of tumors can be considered in the design of multifunctional drug delivery nanosystems to improve the efficiency of tumor therapy through targeted drug delivery and specific drug release in the tumor tissue. In this study, phenylboronic acid-modified pH- and glucose-responsive polymer micelles were designed for the targeted delivery of anticancer drugs. The polymeric micelles demonstrated prolonged and pH/glucose-triggered drug release and enhanced cellular internalization by B16F10 cells through a receptor-mediated endocytosis pathway. The polymeric micellar system could inhibit the proliferation of B16F10 cells with IC50 values lower than those of unmodified micelles. In addition, the polymeric micellar system could markedly suppress cell migration, colony formation, and invasion and promote the apoptosis of B16F10 cells, indicating good anticancer efficiency in vitro. Therefore, this polymeric nanocarrier provides a potential platform for targeted anticancer therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于靶向递送抗癌药物的苯硼酸改性 pH/葡萄糖双响应聚合物胶束
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Publication Information ACS Applied Materials & Interfaces Family Early Career Forum 2024 Enhanced Magnetic Properties in a Copper β-Diketonato Complex Film Stabilized by I··· I Interactions on a Graphite Surface at 2 K for Molecular Spintronics Carbon Fiber/Methyltrimethoxysilane/Graphene Composite Aerogel for High-Strength Strain Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1