Shuo Wang, Sheng Gong, Thorben Böger, Jon A. Newnham, Daniele Vivona, Muy Sokseiha, Kiarash Gordiz, Abhishek Aggarwal, Taishan Zhu, Wolfgang G. Zeier, Jeffrey C. Grossman* and Yang Shao-Horn*,
{"title":"Multimodal Machine Learning for Materials Science: Discovery of Novel Li-Ion Solid Electrolytes","authors":"Shuo Wang, Sheng Gong, Thorben Böger, Jon A. Newnham, Daniele Vivona, Muy Sokseiha, Kiarash Gordiz, Abhishek Aggarwal, Taishan Zhu, Wolfgang G. Zeier, Jeffrey C. Grossman* and Yang Shao-Horn*, ","doi":"10.1021/acs.chemmater.4c0225710.1021/acs.chemmater.4c02257","DOIUrl":null,"url":null,"abstract":"<p >The widespread adoption of multimodal machine learning (ML) models such as GPT-4 and Gemini has revolutionized various research domains, including computer vision and natural language processing. However, their implementation in materials informatics remains underexplored, despite the availability of diverse modalities in materials data. This study introduces an approach to multimodal machine learning in materials science via composition-structure bimodal learning and proposes the COmposition-Structure Bimodal Network (COSNet). The COSNet demonstrates significantly improved performance in predicting a variety of material properties, such as lithium-ion conductivity in solid electrolytes, band gap, refractive index, and formation enthalpy. This research highlights the critical importance of representation alignment in multimodal learning for materials science, enabling knowledge transfer between modalities and avoiding biased or divergent learning. Furthermore, we present an integrated paradigm that combines multimodal learning, transfer learning, ensemble methods, and atomic simulation to facilitate the discovery of novel superionic conductors.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"36 23","pages":"11541–11550 11541–11550"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02257","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread adoption of multimodal machine learning (ML) models such as GPT-4 and Gemini has revolutionized various research domains, including computer vision and natural language processing. However, their implementation in materials informatics remains underexplored, despite the availability of diverse modalities in materials data. This study introduces an approach to multimodal machine learning in materials science via composition-structure bimodal learning and proposes the COmposition-Structure Bimodal Network (COSNet). The COSNet demonstrates significantly improved performance in predicting a variety of material properties, such as lithium-ion conductivity in solid electrolytes, band gap, refractive index, and formation enthalpy. This research highlights the critical importance of representation alignment in multimodal learning for materials science, enabling knowledge transfer between modalities and avoiding biased or divergent learning. Furthermore, we present an integrated paradigm that combines multimodal learning, transfer learning, ensemble methods, and atomic simulation to facilitate the discovery of novel superionic conductors.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.