Trace MnFe2O4 Boosts Polyphenol-Maillard Reaction and Humification Process for Value-Added Composting: Integrated Effect of Chemical and Enzymatic Catalysis
Yujiao Long, Hongmei Jin*, Haiyan Li, Ning Zhu, Enhui Sun, Chao Shan, Hongchao Li and Yun Cao,
{"title":"Trace MnFe2O4 Boosts Polyphenol-Maillard Reaction and Humification Process for Value-Added Composting: Integrated Effect of Chemical and Enzymatic Catalysis","authors":"Yujiao Long, Hongmei Jin*, Haiyan Li, Ning Zhu, Enhui Sun, Chao Shan, Hongchao Li and Yun Cao, ","doi":"10.1021/acsestengg.4c0041510.1021/acsestengg.4c00415","DOIUrl":null,"url":null,"abstract":"<p >Promoting humification during composting is of pivotal significance for converting organic waste to value-added fertilizer. Traditional composting additives for enhanced humification commonly suffer from low efficiency and a large dosage. Herein, we presented a novel and effective technique with great application potential to promote humification during composting via simple addition of trace MnFe<sub>2</sub>O<sub>4</sub>, behind which the essential mechanism was interpreted from both chemical and biological perspectives. Results indicated that with an economical dosage of MnFe<sub>2</sub>O<sub>4</sub> (0.02 wt %), the content of humic acid (HA) and humification index (HI) were increased by 15.2 and 18.7% in comparison with the control group, respectively. The chemical mechanism steering such enhanced humification was revealed through analysis of precursor substances evolution and HA structural characterization. Specifically, MnFe<sub>2</sub>O<sub>4</sub> addition catalyzed the polyphenol-Maillard reaction, leading to rapid oxidation and subsequent polymerization of the precursor substances. Meanwhile, analysis of diversity and evolution of microbial communities as well as activities of laccase and peroxidase demonstrated that MnFe<sub>2</sub>O<sub>4</sub> addition increased the relative abundance of laccase/peroxidase-producing bacteria and thus elevated the enzymatic activities of laccase/peroxidase, which played crucial roles in catalyzing polyphenol-Maillard reaction and humification. This study demonstrates that MnFe<sub>2</sub>O<sub>4</sub> could serve as a promising composting additive to promote humification and thereby produce value-added composts.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"4 12","pages":"3067–3079 3067–3079"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Promoting humification during composting is of pivotal significance for converting organic waste to value-added fertilizer. Traditional composting additives for enhanced humification commonly suffer from low efficiency and a large dosage. Herein, we presented a novel and effective technique with great application potential to promote humification during composting via simple addition of trace MnFe2O4, behind which the essential mechanism was interpreted from both chemical and biological perspectives. Results indicated that with an economical dosage of MnFe2O4 (0.02 wt %), the content of humic acid (HA) and humification index (HI) were increased by 15.2 and 18.7% in comparison with the control group, respectively. The chemical mechanism steering such enhanced humification was revealed through analysis of precursor substances evolution and HA structural characterization. Specifically, MnFe2O4 addition catalyzed the polyphenol-Maillard reaction, leading to rapid oxidation and subsequent polymerization of the precursor substances. Meanwhile, analysis of diversity and evolution of microbial communities as well as activities of laccase and peroxidase demonstrated that MnFe2O4 addition increased the relative abundance of laccase/peroxidase-producing bacteria and thus elevated the enzymatic activities of laccase/peroxidase, which played crucial roles in catalyzing polyphenol-Maillard reaction and humification. This study demonstrates that MnFe2O4 could serve as a promising composting additive to promote humification and thereby produce value-added composts.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.