6GTelMED: Resources Recommendation Framework on 6G-Enabled Distributed Telemedicine Using Edge-AI

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Consumer Electronics Pub Date : 2024-10-07 DOI:10.1109/TCE.2024.3473291
Syed Thouheed Ahmed;Kiran Kumari Patil;Sreedhar Kumar S.;Rajesh Kumar Dhanaraj;Surbhi Bhatia Khan;Saeed Alzahrani;Shalli Rani
{"title":"6GTelMED: Resources Recommendation Framework on 6G-Enabled Distributed Telemedicine Using Edge-AI","authors":"Syed Thouheed Ahmed;Kiran Kumari Patil;Sreedhar Kumar S.;Rajesh Kumar Dhanaraj;Surbhi Bhatia Khan;Saeed Alzahrani;Shalli Rani","doi":"10.1109/TCE.2024.3473291","DOIUrl":null,"url":null,"abstract":"Telemedicine infrastructure is enhanced in recent times and applications developed have adopted base-line networking standards according to 4G/5G and LTE. The major challenge in exiting infrastructural setups is higher-latency and exposed privacy of resources and sensitive information. In this manuscript, we have proposed a 6G enabled resource recommendation framework for telemedicine. The framework is developed on the Edge-AI computational principles to cater the needs and demands of medical devices associated in telemedicine. The approach is to customize the network via Distributed Telemedicine Network (DTN) protocol for edge-devices such IoT/IoMT and medical consumers’ calibration on an existing TelMED protocol of dynamic resource allocation. The DTN aims to generate a resource recommendation stack for incoming user demand via 6G spectrum. The edge-AI framework supports resources allocation with minimal latency and delay and improved privacy of data under the operations. The framework further interfaces the Industry 5.0 applications and consumer demands for effective resources allocation, scheduling and monitoring.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"70 3","pages":"5524-5532"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706098/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Telemedicine infrastructure is enhanced in recent times and applications developed have adopted base-line networking standards according to 4G/5G and LTE. The major challenge in exiting infrastructural setups is higher-latency and exposed privacy of resources and sensitive information. In this manuscript, we have proposed a 6G enabled resource recommendation framework for telemedicine. The framework is developed on the Edge-AI computational principles to cater the needs and demands of medical devices associated in telemedicine. The approach is to customize the network via Distributed Telemedicine Network (DTN) protocol for edge-devices such IoT/IoMT and medical consumers’ calibration on an existing TelMED protocol of dynamic resource allocation. The DTN aims to generate a resource recommendation stack for incoming user demand via 6G spectrum. The edge-AI framework supports resources allocation with minimal latency and delay and improved privacy of data under the operations. The framework further interfaces the Industry 5.0 applications and consumer demands for effective resources allocation, scheduling and monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6GTelMED:基于边缘人工智能的6g分布式远程医疗资源推荐框架
近年来,远程医疗基础设施得到加强,开发的应用采用了4G/5G和LTE的基线网络标准。现有基础设施设置的主要挑战是更高的延迟和暴露的资源和敏感信息的隐私。在本文中,我们提出了一个支持6G的远程医疗资源推荐框架。该框架是根据边缘人工智能计算原理开发的,以满足与远程医疗相关的医疗设备的需求。该方法是通过分布式远程医疗网络(DTN)协议定制网络,用于IoT/IoMT等边缘设备和医疗消费者在现有的动态资源分配的TelMED协议上进行校准。DTN旨在通过6G频谱为传入用户需求生成资源推荐堆栈。边缘ai框架支持最小延迟和延迟的资源分配,提高了操作下数据的隐私性。该框架进一步连接了Industry 5.0应用程序和消费者对有效资源分配、调度和监控的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
期刊最新文献
Table of Contents Guest Editorial Consumer-Driven Energy-Efficient WSNs Architecture for Personalization and Contextualization in E-Commerce Systems IEEE Consumer Technology Society Officers and Committee Chairs Energy-Efficient Secure Architecture For Personalization E-Commerce WSN IEEE Consumer Technology Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1