Finite- and Fixed-Time Learning Control for Continuous-Time Nonlinear Systems

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-11-13 DOI:10.1109/TSMC.2024.3488961
Zihan Li;Dong Shen;Daniel W. C. Ho
{"title":"Finite- and Fixed-Time Learning Control for Continuous-Time Nonlinear Systems","authors":"Zihan Li;Dong Shen;Daniel W. C. Ho","doi":"10.1109/TSMC.2024.3488961","DOIUrl":null,"url":null,"abstract":"Finite- and fixed-time parameter estimation and adaptive control have been extensively investigated in recent years. This study proposes a finite- and fixed-time learning control framework to achieve simultaneous finite/fixed-time parameter estimation and control. The proposed learning control method first estimates unknown parameters and then uses these estimates to improve the control performance. Therefore, we first consider the convergence condition of finite/fixed-time parameter estimation. Next, a novel learning-based finite/fixed control law is designed. Unlike most existing adaptation laws, the estimate is updated to improve the understanding of the system rather than eliminate the influence of uncertainties. The finite/fixed-time convergence of the system states is analyzed using a direct dynamic analysis method that differs from the long-used Lyapunov method. We show that the proposed control input satisfies the excitation condition of the finite/fixed-time estimation, indicating simultaneous estimation and control. Finally, numerical simulations are performed to verify the theoretical results.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 1","pages":"792-804"},"PeriodicalIF":8.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10752416/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Finite- and fixed-time parameter estimation and adaptive control have been extensively investigated in recent years. This study proposes a finite- and fixed-time learning control framework to achieve simultaneous finite/fixed-time parameter estimation and control. The proposed learning control method first estimates unknown parameters and then uses these estimates to improve the control performance. Therefore, we first consider the convergence condition of finite/fixed-time parameter estimation. Next, a novel learning-based finite/fixed control law is designed. Unlike most existing adaptation laws, the estimate is updated to improve the understanding of the system rather than eliminate the influence of uncertainties. The finite/fixed-time convergence of the system states is analyzed using a direct dynamic analysis method that differs from the long-used Lyapunov method. We show that the proposed control input satisfies the excitation condition of the finite/fixed-time estimation, indicating simultaneous estimation and control. Finally, numerical simulations are performed to verify the theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续时间非线性系统的有限和固定时间学习控制
有限和定时参数估计和自适应控制近年来得到了广泛的研究。本研究提出一种有限和固定时间学习控制框架,以同时实现有限/固定时间参数估计和控制。提出的学习控制方法首先估计未知参数,然后利用这些估计来提高控制性能。因此,我们首先考虑有限/固定时间参数估计的收敛条件。其次,设计了一种新的基于学习的有限/固定控制律。与大多数现有的适应律不同,估算的更新是为了提高对系统的理解,而不是消除不确定性的影响。采用一种不同于长期使用的Lyapunov方法的直接动态分析方法,分析了系统状态的有限/固定时间收敛性。我们证明了所提出的控制输入满足有限/固定时间估计的激励条件,表明同时估计和控制。最后,通过数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Transactions on Systems, Man, and Cybernetics: Systems Information for Authors IEEE Systems, Man, and Cybernetics Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1