Daniel Waldschitz, Mark-Richard Neudert, Jakob Kitzmüller, Jae Hwi Bong, Yannick Bus, Eva Maria Karner, Peter Sinner, Oliver Spadiut
{"title":"Antimicrobial peptide production with Corynebacterium glutamicum on lignocellulosic side streams","authors":"Daniel Waldschitz, Mark-Richard Neudert, Jakob Kitzmüller, Jae Hwi Bong, Yannick Bus, Eva Maria Karner, Peter Sinner, Oliver Spadiut","doi":"10.1186/s13068-024-02587-1","DOIUrl":null,"url":null,"abstract":"<div><h3>\n <b>Background</b>\n </h3><p>Biorefineries usually focus on the production of low-value commodities, such as bioethanol, platform chemicals or single cell protein. Shifting production to bioactive compounds, such as antimicrobial peptides, could provide an opportunity to increase the economic viability of biorefineries.</p><h3>\n <b>Results</b>\n </h3><p>Recombinant production of the antimicrobial peptide pediocin PA-1 in <i>Corynebacterium glutamicum</i> was transferred from yeast extract-based media to minimal media based on lignocellulosic spent sulfite liquor. Induced batch, fed batch, and extended batch process modes were compared for highest pediocin PA-1 production.</p><h3>\n <b>Conclusion</b>\n </h3><p>For pediocin PA-1 production on lignocellulosic residues, extended batch cultivation was identified as the optimal process mode, producing up to <span>\\(\\simeq\\)</span> 104 mg/L active pediocin PA-1. Moreover, the production of pediocin PA-1 on this sustainable second generation resource exceeded its state-of-the-art production on yeast extract-based media <span>\\(\\simeq\\)</span> 1.5-fold.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02587-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02587-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Biorefineries usually focus on the production of low-value commodities, such as bioethanol, platform chemicals or single cell protein. Shifting production to bioactive compounds, such as antimicrobial peptides, could provide an opportunity to increase the economic viability of biorefineries.
Results
Recombinant production of the antimicrobial peptide pediocin PA-1 in Corynebacterium glutamicum was transferred from yeast extract-based media to minimal media based on lignocellulosic spent sulfite liquor. Induced batch, fed batch, and extended batch process modes were compared for highest pediocin PA-1 production.
Conclusion
For pediocin PA-1 production on lignocellulosic residues, extended batch cultivation was identified as the optimal process mode, producing up to \(\simeq\) 104 mg/L active pediocin PA-1. Moreover, the production of pediocin PA-1 on this sustainable second generation resource exceeded its state-of-the-art production on yeast extract-based media \(\simeq\) 1.5-fold.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis