Strain and Exchange Bias-Enabled Field-Free Voltage-Controlled Magnetic Anisotropy Switching

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED Journal of Superconductivity and Novel Magnetism Pub Date : 2024-12-18 DOI:10.1007/s10948-024-06873-9
Pinkesh Kumar Mishra, Swapnil Bhuktare
{"title":"Strain and Exchange Bias-Enabled Field-Free Voltage-Controlled Magnetic Anisotropy Switching","authors":"Pinkesh Kumar Mishra,&nbsp;Swapnil Bhuktare","doi":"10.1007/s10948-024-06873-9","DOIUrl":null,"url":null,"abstract":"<div><p>In pursuing energy-efficient and high-performance nonvolatile magnetic memory devices, this study explores voltage-induced techniques, specifically voltage-controlled magnetic anisotropy (VCMA), as an alternative to current-induced methods, which suffer from Ohmic loss. The perpendicular magnetic anisotropy (PMA) nanomagnet, known for its superior stability and scalability compared to in-plane variants, VCMA switching in PMA system requires an in-plane symmetry breaking field, which limits its practicality for on-chip applications. We investigate field-free VCMA switching utilizing strain from a piezoelectric layer and an exchange bias from an antiferromagnetic material. Using macro-spin simulations based on the Landau-Lifshitz-Gilbert equation, we systematically analyze how the VCMA effect, strain-induced magnetoelastic effect, exchange bias, oxide and free layer thicknesses, and damping constant affect the switching performance of the device. The write error rate (WER) drops drastically from 0.2 (without stress) to <span>\\({10}^{-6}\\)</span> (100 MPa stress), showcasing the effectiveness of our approach. We also find that the damping constant, especially in the 0.01–0.05 range, plays a crucial role in further optimizing the switching performance of the device. This study offers new insights for enhancing magnetic memory technology.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06873-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In pursuing energy-efficient and high-performance nonvolatile magnetic memory devices, this study explores voltage-induced techniques, specifically voltage-controlled magnetic anisotropy (VCMA), as an alternative to current-induced methods, which suffer from Ohmic loss. The perpendicular magnetic anisotropy (PMA) nanomagnet, known for its superior stability and scalability compared to in-plane variants, VCMA switching in PMA system requires an in-plane symmetry breaking field, which limits its practicality for on-chip applications. We investigate field-free VCMA switching utilizing strain from a piezoelectric layer and an exchange bias from an antiferromagnetic material. Using macro-spin simulations based on the Landau-Lifshitz-Gilbert equation, we systematically analyze how the VCMA effect, strain-induced magnetoelastic effect, exchange bias, oxide and free layer thicknesses, and damping constant affect the switching performance of the device. The write error rate (WER) drops drastically from 0.2 (without stress) to \({10}^{-6}\) (100 MPa stress), showcasing the effectiveness of our approach. We also find that the damping constant, especially in the 0.01–0.05 range, plays a crucial role in further optimizing the switching performance of the device. This study offers new insights for enhancing magnetic memory technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应变和交换偏置使能无场电压控制磁各向异性开关
为了追求高能效和高性能的非易失性磁存储器件,本研究探索了电压感应技术,特别是电压控制磁各向异性(VCMA),作为电流感应方法的替代方法,因为电流感应方法存在欧姆损耗。垂直磁各向异性(PMA)纳米磁体以其优越的稳定性和可扩展性而闻名,但PMA系统中的VCMA开关需要一个面内对称破缺场,这限制了其在片上应用的实用性。我们利用压电层的应变和反铁磁材料的交换偏置来研究无场VCMA开关。采用基于Landau-Lifshitz-Gilbert方程的宏观自旋模拟,系统分析了VCMA效应、应变磁弹性效应、交换偏置、氧化层和自由层厚度以及阻尼常数对器件开关性能的影响。写入错误率(WER)从0.2(无压力)急剧下降到\({10}^{-6}\) (100 MPa压力),显示了我们的方法的有效性。我们还发现,阻尼常数,特别是在0.01-0.05范围内,对进一步优化器件的开关性能起着至关重要的作用。本研究为增强磁记忆技术提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
期刊最新文献
Indentation Effects on Critical Performance of the New Developed WST High Jc Nb3Sn Strand Understanding of Strain Condition Effects on Physical Properties of the Bi2Se3 Compound by the DFT Method A DFT Study on the Effects of Changing Transition Metals (Fe, Ru and Os) in Neodymium Phosphide Skutterudites NdTr4P12: Structural, Elastic, Thermodynamic, Electronic, Magnetic, Optical and Thermoelectric Properties A Facile Approach of Synthesizing Biogenic Copper Ferrite Nanoparticles: Characterization, Evaluation of Their Impact on Reducing Oxidative Stress-Induced Pathogenesis, and Human Breast Cancer Proliferation Tuning the Magnetic Behavior of BaBiO3 Nanoparticles by Pb Doping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1