Lipoxygenase in Adaptation of the Neurospora crassa Cells to Temperature Stress

IF 1 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Biochemistry and Microbiology Pub Date : 2024-12-18 DOI:10.1134/S0003683824604864
S. Yu. Filippovich, G. P. Bachurina
{"title":"Lipoxygenase in Adaptation of the Neurospora crassa Cells to Temperature Stress","authors":"S. Yu. Filippovich,&nbsp;G. P. Bachurina","doi":"10.1134/S0003683824604864","DOIUrl":null,"url":null,"abstract":"<p>The adaptation of the <i>N. crassa</i> lipoxygenase (LOX) in response to heat (45°C) and cold (4°C) shock was studied. The difference was revealed in the dynamics of the LOX activity depending on the growing conditions of the mycelium. After incubation of the surface culture at 45°C, a gradual increase in the specific activity of the enzyme was observed with maximum at 2–3 h, followed by a subsequent decrease to the initial level. Under the same conditions, in a submerged culture, a decrease in the LOX activity was observed after 5 min; however, after 1 h of incubation, the enzyme activity also reached the initial level. The sensitivity of the <i>N. crassa</i> LOX to elevated temperatures is very high, since it is noted only in a narrow temperature range: the effect was detected at 45<sup>o</sup>C; however, the enzymatic activity did not change in the culture incubated at 42°C, but, on the other hand, LOX was completely inactivated in the mycelium at 48°C. When the fungal cells were exposed to cold, the specific LOX activity increased after 1 h, then decreased to the initial level (2–3 h) and increased again, reaching a maximum after 18 h. When two stress factors, cold and starvation, acted simultaneously on the <i>N. crassa</i> cells, the treatment with cold had a decisive effect on the LOX activity, which was especially noticeable after 8 h of incubation.</p>","PeriodicalId":466,"journal":{"name":"Applied Biochemistry and Microbiology","volume":"60 6","pages":"1171 - 1176"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0003683824604864","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The adaptation of the N. crassa lipoxygenase (LOX) in response to heat (45°C) and cold (4°C) shock was studied. The difference was revealed in the dynamics of the LOX activity depending on the growing conditions of the mycelium. After incubation of the surface culture at 45°C, a gradual increase in the specific activity of the enzyme was observed with maximum at 2–3 h, followed by a subsequent decrease to the initial level. Under the same conditions, in a submerged culture, a decrease in the LOX activity was observed after 5 min; however, after 1 h of incubation, the enzyme activity also reached the initial level. The sensitivity of the N. crassa LOX to elevated temperatures is very high, since it is noted only in a narrow temperature range: the effect was detected at 45oC; however, the enzymatic activity did not change in the culture incubated at 42°C, but, on the other hand, LOX was completely inactivated in the mycelium at 48°C. When the fungal cells were exposed to cold, the specific LOX activity increased after 1 h, then decreased to the initial level (2–3 h) and increased again, reaching a maximum after 18 h. When two stress factors, cold and starvation, acted simultaneously on the N. crassa cells, the treatment with cold had a decisive effect on the LOX activity, which was especially noticeable after 8 h of incubation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
角叉菜神经孢子菌细胞适应温度胁迫过程中的脂氧合酶
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Biochemistry and Microbiology
Applied Biochemistry and Microbiology 生物-生物工程与应用微生物
CiteScore
1.70
自引率
12.50%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Applied Biochemistry and Microbiology is an international peer reviewed journal that publishes original articles on biochemistry and microbiology that have or may have practical applications. The studies include: enzymes and mechanisms of enzymatic reactions, biosynthesis of low and high molecular physiologically active compounds; the studies of their structure and properties; biogenesis and pathways of their regulation; metabolism of producers of biologically active compounds, biocatalysis in organic synthesis, applied genetics of microorganisms, applied enzymology; protein and metabolic engineering, biochemical bases of phytoimmunity, applied aspects of biochemical and immunochemical analysis; biodegradation of xenobiotics; biosensors; biomedical research (without clinical studies). Along with experimental works, the journal publishes descriptions of novel research techniques and reviews on selected topics.
期刊最新文献
Enhancing Disease Resistance in Plants and Stored Potato Tubers through Inoculation of Seed Tubers with the Endophyte Bacillus subtilis 10-4 and Genomic Analysis of its Antimicrobial Properties Characteristics of Growth and Metabolism of Lacticaseibacillus casei in Model Milk Media and Semi-Hard Cheeses Proteome Analysis of the Nitric Oxide Donor Effect on Pisum Sativum L. Roots The Effect of Fermentation by Lactobacilli on the Functional–Technological Properties of Pea Protein Isolates Determination of Bacterial Sensitivity to a Bacteriophage by Using a Compact Acoustic Analyzer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1