Effect of Biomass-Based Additives on the Thermal, Physical, and Mechanical Properties of Fired Clay Bricks: A Review

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Thermophysics Pub Date : 2024-12-18 DOI:10.1007/s10765-024-03476-3
Kovo G. Akpomie, Alhadji Malloum, Samson O. Akpotu, Kayode A. Adegoke, Emmanuel Sunday Okeke, Elizabeth O. Omotola, Chinemerem Ruth Ohoro, James F. Amaku, Jeanet Conradie, Chijioke Olisah
{"title":"Effect of Biomass-Based Additives on the Thermal, Physical, and Mechanical Properties of Fired Clay Bricks: A Review","authors":"Kovo G. Akpomie,&nbsp;Alhadji Malloum,&nbsp;Samson O. Akpotu,&nbsp;Kayode A. Adegoke,&nbsp;Emmanuel Sunday Okeke,&nbsp;Elizabeth O. Omotola,&nbsp;Chinemerem Ruth Ohoro,&nbsp;James F. Amaku,&nbsp;Jeanet Conradie,&nbsp;Chijioke Olisah","doi":"10.1007/s10765-024-03476-3","DOIUrl":null,"url":null,"abstract":"<div><p>The wide use of clay minerals in various applications, particularly the production of fired bricks for buildings, has led to the continuous depletion of clay deposits. Moreover, a considerable amount of waste is generated globally which negatively impacts the environment and is constantly increasing. To conserve the environment and reduce clay depletion, it has become popular to incorporate these wastes into clays for fired brick production. Biomass-based wastes are advantageous when used as additives because they enhance the technological properties of the bricks, reduce energy and cost requirements, and alleviate the effect of climate change on buildings. This work reviews the influence of biomass-based additives on the physical, mechanical, and thermal properties of fired clay bricks. We considered recent articles (2014–2024) on various biomass-based additives, describing how the dosage of the additives influences the shrinkage, porosity, water absorption, bulk density, compressive strength, and thermal conductivity of fired bricks. The optimum values of the technological properties from the studies reviewed were highlighted. Moreover, the knowledge gaps were identified, and future perspectives were presented. In general, the incorporation of biomass-based materials in fired bricks decreased the thermal conductivity and density, which is suitable for sustainable lightweight thermally insulating bricks.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03476-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The wide use of clay minerals in various applications, particularly the production of fired bricks for buildings, has led to the continuous depletion of clay deposits. Moreover, a considerable amount of waste is generated globally which negatively impacts the environment and is constantly increasing. To conserve the environment and reduce clay depletion, it has become popular to incorporate these wastes into clays for fired brick production. Biomass-based wastes are advantageous when used as additives because they enhance the technological properties of the bricks, reduce energy and cost requirements, and alleviate the effect of climate change on buildings. This work reviews the influence of biomass-based additives on the physical, mechanical, and thermal properties of fired clay bricks. We considered recent articles (2014–2024) on various biomass-based additives, describing how the dosage of the additives influences the shrinkage, porosity, water absorption, bulk density, compressive strength, and thermal conductivity of fired bricks. The optimum values of the technological properties from the studies reviewed were highlighted. Moreover, the knowledge gaps were identified, and future perspectives were presented. In general, the incorporation of biomass-based materials in fired bricks decreased the thermal conductivity and density, which is suitable for sustainable lightweight thermally insulating bricks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
期刊最新文献
Effect of Biomass-Based Additives on the Thermal, Physical, and Mechanical Properties of Fired Clay Bricks: A Review Stability Optimization of Al2O3/SiO2 Hybrid Nanofluids and a New Correlation for Thermal Conductivity: An AI-Supported Approach The Inhibitory Effect of Magnetism on the Thermal Transport in Nd-Ce-Fe-B Sintered Magnet Elucidating the Interaction Interplay Between the Gabapentin an Anticonvulsant Drug and 2-Hydroxyethylammonium Octanoate-Based Surface-Active Ionic Liquids Investigation of Effects of Vibrations on Nanofluid-Filled Pulsating Heat Pipe for Efficient Electric Vehicle Battery Thermal Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1