{"title":"Parrondo’s paradox in quantum walks with different shift operators","authors":"Zbigniew Walczak, Jarosław H. Bauer","doi":"10.1007/s11128-024-04614-4","DOIUrl":null,"url":null,"abstract":"<div><p>Parrondo’s paradox refers to an unexpected effect when some combination of biased quantum walks shows a counterintuitive inversion of the bias direction. To date this effect was studied in the case of one-dimensional discrete-time quantum walks with deterministic sequences of two or more quantum coins and one shift operator. In the present work, we show that Parrondo’s paradox may also occur for one coin and two different shift operators which create deterministic periodic or aperiodic sequences. Moreover, we demonstrate how Parrondo’s paradox affects the time evolution of the walker-coin quantum entanglement for this kind of quantum walks.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04614-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Parrondo’s paradox refers to an unexpected effect when some combination of biased quantum walks shows a counterintuitive inversion of the bias direction. To date this effect was studied in the case of one-dimensional discrete-time quantum walks with deterministic sequences of two or more quantum coins and one shift operator. In the present work, we show that Parrondo’s paradox may also occur for one coin and two different shift operators which create deterministic periodic or aperiodic sequences. Moreover, we demonstrate how Parrondo’s paradox affects the time evolution of the walker-coin quantum entanglement for this kind of quantum walks.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.