High triplet energy host material with a 1,3,5-oxadiazine core from a one-step interrupted Fischer indolization

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2024-12-19 DOI:10.1038/s42004-024-01377-y
Charlotte Riley, Hwan-Hee Cho, Alexander C. Brannan, Nguyen Le Phuoc, Mikko Linnolahti, Neil C. Greenham, Alexander S. Romanov
{"title":"High triplet energy host material with a 1,3,5-oxadiazine core from a one-step interrupted Fischer indolization","authors":"Charlotte Riley, Hwan-Hee Cho, Alexander C. Brannan, Nguyen Le Phuoc, Mikko Linnolahti, Neil C. Greenham, Alexander S. Romanov","doi":"10.1038/s42004-024-01377-y","DOIUrl":null,"url":null,"abstract":"Energy-efficient and deep-blue organic light-emitting diode (OLED) with long operating stability remains a key challenge to enable a disruptive change in OLED display and lighting technology. Part of the challenge is associated with a very narrow choice of the robust host materials having over 3 eV triplet energy level to facilitate efficient deep-blue emission and deliver excellent performance in the OLED device. Here we show the molecular design of new 1,3,5-oxadiazines (NON)-host materials with high triplet energy over 3.2 eV, enabling deep-blue OLED devices with a peak external quantum efficiency of 21%. A series of NON-host materials are prepared by the condensation of substituted arylhydrazines and cyclohexylcarbaldehyde in a 2:3 ratio. This straightforward “one-pot” procedure enables the formation of indoline-containing derivatives with three fused heterocyclic rings and two stereogenic centres. All materials emit UV-fluorescence in the range of 315–338 nm while possessing highly desirable characteristics for application in deep-blue OLED devices: good thermal stability, a wide energy gap (3.9 eV), a high triplet energy level of (3.3 eV), and excellent volatility during sublimation. Diluting phosphorescent and thermally activated delayed fluorescence emitter molecules in solid-state host matrices has proven to be a useful strategy to hinder self-quenching mechanisms, but host materials must meet several criteria to enable energy efficient and stable OLEDs. Here, the authors report the synthesis of a series of 1,3,5-oxadiazines from a one-pot interrupted Fischer indolization, and demonstrate that they possess highly desirable characteristics as host materials in deep-blue OLED devices.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-8"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01377-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01377-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy-efficient and deep-blue organic light-emitting diode (OLED) with long operating stability remains a key challenge to enable a disruptive change in OLED display and lighting technology. Part of the challenge is associated with a very narrow choice of the robust host materials having over 3 eV triplet energy level to facilitate efficient deep-blue emission and deliver excellent performance in the OLED device. Here we show the molecular design of new 1,3,5-oxadiazines (NON)-host materials with high triplet energy over 3.2 eV, enabling deep-blue OLED devices with a peak external quantum efficiency of 21%. A series of NON-host materials are prepared by the condensation of substituted arylhydrazines and cyclohexylcarbaldehyde in a 2:3 ratio. This straightforward “one-pot” procedure enables the formation of indoline-containing derivatives with three fused heterocyclic rings and two stereogenic centres. All materials emit UV-fluorescence in the range of 315–338 nm while possessing highly desirable characteristics for application in deep-blue OLED devices: good thermal stability, a wide energy gap (3.9 eV), a high triplet energy level of (3.3 eV), and excellent volatility during sublimation. Diluting phosphorescent and thermally activated delayed fluorescence emitter molecules in solid-state host matrices has proven to be a useful strategy to hinder self-quenching mechanisms, but host materials must meet several criteria to enable energy efficient and stable OLEDs. Here, the authors report the synthesis of a series of 1,3,5-oxadiazines from a one-pot interrupted Fischer indolization, and demonstrate that they possess highly desirable characteristics as host materials in deep-blue OLED devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有1,3,5-恶二嗪核心的高三重态能量宿主材料从一步中断菲舍尔吲哚
高效节能的深蓝有机发光二极管(OLED)具有长时间的工作稳定性仍然是OLED显示和照明技术实现颠覆性变革的关键挑战。这一挑战的部分原因在于,为了促进高效的深蓝色发射,并在OLED器件中提供出色的性能,坚固的主体材料的选择范围非常狭窄,其三重态能级超过3 eV。在这里,我们展示了新的1,3,5-恶二嗪(NON)主体材料的分子设计,其三重态能量超过3.2 eV,使深蓝OLED器件的峰值外量子效率达到21%。用取代芳基肼和环己基乙醛以2:3的比例缩合制备了一系列非主体材料。这种简单的“一锅”过程可以形成含吲哚的衍生物,具有三个融合的杂环和两个立体中心。所有材料都能发出315-338 nm范围内的紫外荧光,同时具有用于深蓝色OLED器件的非常理想的特性:良好的热稳定性,宽的能隙(3.9 eV),高的三重态能级(3.3 eV),以及在升华过程中的优异挥发性。在固态基质中稀释磷光和热激活的延迟荧光发射器分子已被证明是一种有效的策略,可以阻止自猝灭机制,但基质材料必须满足几个标准,才能实现节能和稳定的oled。在这里,作者报告了一系列1,3,5-恶二嗪的合成,从一个锅中断Fischer吲哚,并证明了它们具有非常理想的特性,作为深蓝色OLED器件的宿主材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Chemical reactivity of RNA and its modifications with hydrazine. Measurement of phospholipid lateral diffusion at high pressure by in situ magic-angle spinning NMR spectroscopy. Spin-state effect on the efficiency of a post-synthetic modification reaction on a spin crossover complex. Women in chemistry: Q&A with Dr Qi Hao. Women in chemistry: Q&A with Professor Mónica H. Pérez-Temprano.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1