LOX-1-Based Assembly Layer on Devices Surface to Promote Endothelial Repair and Reduce Complications for In Situ Interventional Plaque.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2024-12-18 DOI:10.1002/adhm.202403060
Sainan Liu, Jinquan Huang, Jiayan Luo, Xiaowa Gao, Siqi Song, Qihao Bian, Yajun Weng, Junying Chen
{"title":"LOX-1-Based Assembly Layer on Devices Surface to Promote Endothelial Repair and Reduce Complications for In Situ Interventional Plaque.","authors":"Sainan Liu, Jinquan Huang, Jiayan Luo, Xiaowa Gao, Siqi Song, Qihao Bian, Yajun Weng, Junying Chen","doi":"10.1002/adhm.202403060","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid endothelialization and functional recovery are considered as promising methods to extend the long-term effectiveness of cardiovascular implant materials. LOX-1 participates in the initiation and development of atherosclerosis and is highly expressed in a variety of cells involved in atherosclerosis, hence it is feasible to accelerate the recovery of endothelial function and inhibit the development of existing plaques by regulating LOX-1. Herein, the surface is modified with Poly I, a LOX-1 inhibitor, using rich amino dendritic macromolecules (PAMAM) as the linker coating, to against the pathological microenvironment. Poly I modified surface resisted endothelial damage caused by oxidative stress through the LOX-1-NADPH signaling pathway and inhibited endothelial inflammation via the LOX-1-NF-κB signaling pathway. It also promoted endothelial cell migration and inhibited platelet adhesion. Moreover, the Poly I modified surface can inhibit oxLDL-induced macrophage foam cell formation and alleviate inflammation by modulating macrophage phenotypes. Poly I modified surface significantly reduced plaque burden after treatment of atherosclerotic model rats, most importantly, it significantly inhibited post-implantation-induced restenosis and thrombosis. In vivo and in vitro evaluations confirmed its safety and therapeutic efficacy against atherosclerosis. Overall, the multifunctional Poly I with pathological microenvironment regulation exhibits potential application value in the surface engineering of cardiovascular devices.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403060"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid endothelialization and functional recovery are considered as promising methods to extend the long-term effectiveness of cardiovascular implant materials. LOX-1 participates in the initiation and development of atherosclerosis and is highly expressed in a variety of cells involved in atherosclerosis, hence it is feasible to accelerate the recovery of endothelial function and inhibit the development of existing plaques by regulating LOX-1. Herein, the surface is modified with Poly I, a LOX-1 inhibitor, using rich amino dendritic macromolecules (PAMAM) as the linker coating, to against the pathological microenvironment. Poly I modified surface resisted endothelial damage caused by oxidative stress through the LOX-1-NADPH signaling pathway and inhibited endothelial inflammation via the LOX-1-NF-κB signaling pathway. It also promoted endothelial cell migration and inhibited platelet adhesion. Moreover, the Poly I modified surface can inhibit oxLDL-induced macrophage foam cell formation and alleviate inflammation by modulating macrophage phenotypes. Poly I modified surface significantly reduced plaque burden after treatment of atherosclerotic model rats, most importantly, it significantly inhibited post-implantation-induced restenosis and thrombosis. In vivo and in vitro evaluations confirmed its safety and therapeutic efficacy against atherosclerosis. Overall, the multifunctional Poly I with pathological microenvironment regulation exhibits potential application value in the surface engineering of cardiovascular devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 LOX-1 的设备表面组装层可促进内皮修复并减少原位介入斑块的并发症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
A Microenvironment-Responsive Graphdiyne-Iron Nanozyme Hydrogel with Antibacterial and Anti-Inflammatory Effect for Periodontitis Treatment. Effective Hydrogel Vascular Patch Dual-Loaded with Cycloastragenol Nanostructured Lipid Carriers and Doxycycline for Repairing Extravascular Injury in Abdominal Aortic Aneurysm. Ginsenoside Rd-Loaded Antioxidant Polymersomes to Regulate Mitochondrial Homeostasis for Bone Defect Healing in Periodontitis. RETRACTION: Drug "Pent-Up" in Hollow Magnetic Prussian Blue Nanoparticles for NIR-Induced Chemo-Photothermal Tumor Therapy with Trimodal Imaging. Remodeling the Inflammatory and Immunosuppressive Tumor Microenvironment for Enhancing Antiangiogenic Gene Therapy of Colorectal Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1