Concordant Signal of Genetic Variation Across Marker Densities in the Desert Annual Chylismia brevipes Is Linked With Timing of Winter Precipitation

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2024-12-16 DOI:10.1111/eva.70046
Daniel F. Shryock, Nila Lê, Lesley A. DeFalco, Todd C. Esque
{"title":"Concordant Signal of Genetic Variation Across Marker Densities in the Desert Annual Chylismia brevipes Is Linked With Timing of Winter Precipitation","authors":"Daniel F. Shryock,&nbsp;Nila Lê,&nbsp;Lesley A. DeFalco,&nbsp;Todd C. Esque","doi":"10.1111/eva.70046","DOIUrl":null,"url":null,"abstract":"<p>Climate change coupled with large-scale surface disturbances necessitate active restoration strategies to promote resilient and genetically diverse native plant communities. However, scarcity of native plant materials hinders restoration efforts, leading practitioners to choose from potentially viable but nonlocal seed sources. Genome scans for genetic variation linked with selective environmental gradients have become a useful tool in such efforts, allowing rapid delineation of seed transfer zones along with predictions of genomic vulnerability to climate change. When properly applied, genome scans can reduce the risk of maladaptation due to mismatches between seed source and planting site. However, results are rarely replicated among complimentary data sources. Here, we compared RAD-seq datasets with 819 and 2699 SNPs (in 625 and 356 individuals, respectively) from the Mojave Desert winter annual <i>Chylismia brevipes</i>. Overall, we found that the datasets consistently characterized both neutral population structure and genetic–environmental associations. Ancestry analyses indicated consistent spatial genetic structuring into four regional populations. We also detected a marked signal of isolation by resistance (IBR), wherein spatial genetic structure was better explained by habitat resistance than by geographic distance. Potentially adaptive loci identified from genome scans were associated with the same environmental gradients—fall precipitation, winter minimum temperature, and precipitation timing—regardless of dataset. Paired with our finding that habitat resistance best explained genetic divergence, our results suggest that isolation of populations within environmentally similar habitats—and subsequent local adaption along gradients parallel to these habitats—drive genome-wide divergence in this species. Moreover, strong genetic associations with winter precipitation timing, along with forecasted shifts in precipitation regime due to midcentury climate change, could impact future population dynamics, habitat distribution, and genetic connectivity for <i>C. brevipes</i> populations within the Mojave Desert.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649585/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70046","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change coupled with large-scale surface disturbances necessitate active restoration strategies to promote resilient and genetically diverse native plant communities. However, scarcity of native plant materials hinders restoration efforts, leading practitioners to choose from potentially viable but nonlocal seed sources. Genome scans for genetic variation linked with selective environmental gradients have become a useful tool in such efforts, allowing rapid delineation of seed transfer zones along with predictions of genomic vulnerability to climate change. When properly applied, genome scans can reduce the risk of maladaptation due to mismatches between seed source and planting site. However, results are rarely replicated among complimentary data sources. Here, we compared RAD-seq datasets with 819 and 2699 SNPs (in 625 and 356 individuals, respectively) from the Mojave Desert winter annual Chylismia brevipes. Overall, we found that the datasets consistently characterized both neutral population structure and genetic–environmental associations. Ancestry analyses indicated consistent spatial genetic structuring into four regional populations. We also detected a marked signal of isolation by resistance (IBR), wherein spatial genetic structure was better explained by habitat resistance than by geographic distance. Potentially adaptive loci identified from genome scans were associated with the same environmental gradients—fall precipitation, winter minimum temperature, and precipitation timing—regardless of dataset. Paired with our finding that habitat resistance best explained genetic divergence, our results suggest that isolation of populations within environmentally similar habitats—and subsequent local adaption along gradients parallel to these habitats—drive genome-wide divergence in this species. Moreover, strong genetic associations with winter precipitation timing, along with forecasted shifts in precipitation regime due to midcentury climate change, could impact future population dynamics, habitat distribution, and genetic connectivity for C. brevipes populations within the Mojave Desert.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沙漠短乳糜虫遗传变异的一致信号与冬季降水时间有关。
气候变化加上大规模地表扰动需要积极的恢复策略,以促进有弹性和遗传多样性的本地植物群落。然而,本地植物材料的稀缺阻碍了恢复工作,导致从业者选择潜在可行但非本地的种子来源。基因组扫描与选择性环境梯度相关的遗传变异已经成为这类努力的有用工具,可以快速描绘种子转移区,并预测基因组对气候变化的脆弱性。如果应用得当,基因组扫描可以减少由于种子来源和种植地点不匹配而导致的不适应风险。然而,结果很少在互补的数据来源中得到复制。在这里,我们比较了来自莫哈韦沙漠冬季年度短乳糜虫的819和2699个snp(分别在625和356个个体中)的RAD-seq数据集。总体而言,我们发现这些数据集一致地描述了中性种群结构和遗传环境关联。祖先分析表明,四个区域种群的空间遗传结构一致。我们还发现了由抗性(IBR)隔离的显著信号,其中栖息地抗性比地理距离更能解释空间遗传结构。从基因组扫描中发现的潜在适应性位点与相同的环境梯度(秋季降水、冬季最低温度和降水时间)有关,而与数据集无关。我们的研究结果表明,在环境相似的栖息地中,种群的隔离——以及随后沿着与这些栖息地平行的梯度进行的局部适应——驱动了该物种的全基因组分化。此外,与冬季降水时间的强烈遗传关联,以及由于本世纪中叶气候变化导致的降水制度预测变化,可能会影响莫哈韦沙漠短叶蝉种群未来的种群动态、栖息地分布和遗传连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Issue Information Genetic Architecture Underlying Response to the Fungal Pathogen Dothistroma septosporum in Lodgepole Pine, Jack Pine, and Their Hybrids Genomic Monitoring of a Reintroduced Butterfly Uncovers Contrasting Founder Lineage Survival Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.) Climate-Associated Genetic Variation and Projected Genetic Offsets for Cryptomeria japonica D. Don Under Future Climate Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1