Blockage of polycystin-2 alleviates myocardial ischemia/reperfusion injury by inhibiting autophagy through the Ca2+/Akt/Beclin 1 pathway.

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular cell research Pub Date : 2024-12-16 DOI:10.1016/j.bbamcr.2024.119892
Xiao-Dan Qin, Jian-Feng Liang, Lin-Yu Gan, Ke-Shan Peng, Xue-Hong Huang, Xiao-Ting Li, Jin-Li Chen, Wan Li, Lei Zhang, Jie Jian, Jun Lu
{"title":"Blockage of polycystin-2 alleviates myocardial ischemia/reperfusion injury by inhibiting autophagy through the Ca<sup>2+</sup>/Akt/Beclin 1 pathway.","authors":"Xiao-Dan Qin, Jian-Feng Liang, Lin-Yu Gan, Ke-Shan Peng, Xue-Hong Huang, Xiao-Ting Li, Jin-Li Chen, Wan Li, Lei Zhang, Jie Jian, Jun Lu","doi":"10.1016/j.bbamcr.2024.119892","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is a well-conserved self-protection process that plays an important role in cardiovascular diseases. Excessive autophagy during myocardial ischemia/reperfusion injury (MIRI) induces calcium overload and the overactivation of an autophagic response, thereby aggravating cardiomyocyte damage. Polycystin-2 (PC2) is a Ca<sup>2+</sup>-permeable nonselective cation channel implicated in the regulation of autophagy. In the present study, autophagy was upregulated in myocardial ischemia/reperfusion in vivo and in vitro. PC2 knockdown using adeno-associated virus 9 particles containing Pkd2 short hairpin RNA infection markedly ameliorated MIRI, evidenced by reduced infarct size, diminished morphological changes, decreased cTnI levels, and improved cardiac function. Silencing PC2 reduced the autophagic flux in H9c2 cells. PC2 overexpression-mediated autophagic flux was inhibited by intracellular Ca<sup>2+</sup> chelation with BAPTA-AM. Furthermore, PC2 ablation upregulated p-Akt (Ser473) and downregulated Beclin 1 in H/R. BAPTA-AM downregulated p-Akt(Ser473) and upregulated Beclin 1in PC2-overexpressing H9c2 cells. Moreover, the Akt inhibitor MK2206 abolished the BAPTA-AM-blunted PC2-dependent control of autophagy. Collectively, these results indicated that blockade of PC2 may be associated with the Ca<sup>2+</sup>/Akt/Beclin 1 signaling, thereby inhibiting excessive autophagy and serving as a potential strategy for mitigating MIRI.</p>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":" ","pages":"119892"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbamcr.2024.119892","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autophagy is a well-conserved self-protection process that plays an important role in cardiovascular diseases. Excessive autophagy during myocardial ischemia/reperfusion injury (MIRI) induces calcium overload and the overactivation of an autophagic response, thereby aggravating cardiomyocyte damage. Polycystin-2 (PC2) is a Ca2+-permeable nonselective cation channel implicated in the regulation of autophagy. In the present study, autophagy was upregulated in myocardial ischemia/reperfusion in vivo and in vitro. PC2 knockdown using adeno-associated virus 9 particles containing Pkd2 short hairpin RNA infection markedly ameliorated MIRI, evidenced by reduced infarct size, diminished morphological changes, decreased cTnI levels, and improved cardiac function. Silencing PC2 reduced the autophagic flux in H9c2 cells. PC2 overexpression-mediated autophagic flux was inhibited by intracellular Ca2+ chelation with BAPTA-AM. Furthermore, PC2 ablation upregulated p-Akt (Ser473) and downregulated Beclin 1 in H/R. BAPTA-AM downregulated p-Akt(Ser473) and upregulated Beclin 1in PC2-overexpressing H9c2 cells. Moreover, the Akt inhibitor MK2206 abolished the BAPTA-AM-blunted PC2-dependent control of autophagy. Collectively, these results indicated that blockade of PC2 may be associated with the Ca2+/Akt/Beclin 1 signaling, thereby inhibiting excessive autophagy and serving as a potential strategy for mitigating MIRI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过Ca2+/Akt/Beclin 1途径抑制自噬,阻断多囊卵巢素-2可减轻心肌缺血再灌注损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
期刊最新文献
Blockage of polycystin-2 alleviates myocardial ischemia/reperfusion injury by inhibiting autophagy through the Ca2+/Akt/Beclin 1 pathway. Fidgetin binds spastin to attenuate the microtubule-severing activity. Functional analysis of yak alveolar type II epithelial cells at high and low altitudes based on single-cell sequencing. Hornerin expressed on endothelial cells via interacting with thrombomodulin modulates vascular inflammation and angiogenesis. A fluorescent protein C-terminal fusion knock-in is functional with TRPA1 but not TRPC5.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1