Kelin Zhao, Xue Xia, Naixu Shi, Han Zhou, Jingwen Gai, Ping Li
{"title":"[Expression and significance of ferroptosis marker 4-HNE in <i>in vitro</i> model of systemic sclerosis].","authors":"Kelin Zhao, Xue Xia, Naixu Shi, Han Zhou, Jingwen Gai, Ping Li","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the expression and physiological significance of the ferroptosis marker 4-hydroxynonenal (4-HNE) in myofibroblasts induced by transforming growth factor-β1 (TGF-β1), providing theoretical evidence for its potential role in the diagnosis and treatment of fibrosis in systemic sclerosis (SSc).</p><p><strong>Methods: </strong>Mouse embryonic fibroblasts (NIH3t3) were cultured and divided into two groups after 12 h of starvation: the control group (cultured in 1% serum-containing medium) and the TGF-β1 group (cultured in 10 μg/L TGF-β1 with 1% serum-containing medium). Cell morphology changes in both groups were observed under a microscope. To confirm successful establishment of the SSc cell model, fibrosis markers were analyzed using reverse transcription quantitative real-time PCR (RT-qPCR) and Western blot. Next, flow cytometry was employed to assess the intracellular levels of reactive oxygen species (ROS) in both groups. Finally, Western blot and immunofluorescence staining were used to measure the expression of 4-HNE in the TGF-β1-treated cells.</p><p><strong>Results: </strong>Microscopic observations revealed that TGF-β1 treatment caused the NIH3t3 cells to transition from a typical spindle shape to a flat, polygonal shape with multiple protrusions, indicating fibroblast activation. The RT-qPCR and Western blot analyses showed that the expression of the fibrosis marker Vimentin was significantly upregulated in the TGF-β1 group compared with the control group (<i>P</i> < 0.01), confirming that TGF-β1 effectively promoted fibrosis-related gene and protein expression. Flow cytometry results indicated that TGF-β1 significantly elevated intracellular ROS levels, suggesting the induction of oxidative stress. Furthermore, both Western blot and immuno-fluorescence staining demonstrated a significant increase in 4-HNE expression in the TGF-β1-treated cells (immunofluorescence intensity <i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>TGF-β1 promotes fibroblast activation and fibrosis while inducing ROS production, leading to a marked increase in 4-HNE expression. Given the role of 4-HNE as a marker of lipid peroxidation and its elevated levels in the SSc cell model, this study suggests that 4-HNE could serve as a potential biomarker for fibrosis in SSc. The findings highlight the importance of investigating the mechanisms of 4-HNE in fibrosis and suggest that targeting this pathway could offer new therapeutic opportunities for treating SSc.</p>","PeriodicalId":8790,"journal":{"name":"北京大学学报(医学版)","volume":"56 6","pages":"950-955"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"北京大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To investigate the expression and physiological significance of the ferroptosis marker 4-hydroxynonenal (4-HNE) in myofibroblasts induced by transforming growth factor-β1 (TGF-β1), providing theoretical evidence for its potential role in the diagnosis and treatment of fibrosis in systemic sclerosis (SSc).
Methods: Mouse embryonic fibroblasts (NIH3t3) were cultured and divided into two groups after 12 h of starvation: the control group (cultured in 1% serum-containing medium) and the TGF-β1 group (cultured in 10 μg/L TGF-β1 with 1% serum-containing medium). Cell morphology changes in both groups were observed under a microscope. To confirm successful establishment of the SSc cell model, fibrosis markers were analyzed using reverse transcription quantitative real-time PCR (RT-qPCR) and Western blot. Next, flow cytometry was employed to assess the intracellular levels of reactive oxygen species (ROS) in both groups. Finally, Western blot and immunofluorescence staining were used to measure the expression of 4-HNE in the TGF-β1-treated cells.
Results: Microscopic observations revealed that TGF-β1 treatment caused the NIH3t3 cells to transition from a typical spindle shape to a flat, polygonal shape with multiple protrusions, indicating fibroblast activation. The RT-qPCR and Western blot analyses showed that the expression of the fibrosis marker Vimentin was significantly upregulated in the TGF-β1 group compared with the control group (P < 0.01), confirming that TGF-β1 effectively promoted fibrosis-related gene and protein expression. Flow cytometry results indicated that TGF-β1 significantly elevated intracellular ROS levels, suggesting the induction of oxidative stress. Furthermore, both Western blot and immuno-fluorescence staining demonstrated a significant increase in 4-HNE expression in the TGF-β1-treated cells (immunofluorescence intensity P < 0.05).
Conclusion: TGF-β1 promotes fibroblast activation and fibrosis while inducing ROS production, leading to a marked increase in 4-HNE expression. Given the role of 4-HNE as a marker of lipid peroxidation and its elevated levels in the SSc cell model, this study suggests that 4-HNE could serve as a potential biomarker for fibrosis in SSc. The findings highlight the importance of investigating the mechanisms of 4-HNE in fibrosis and suggest that targeting this pathway could offer new therapeutic opportunities for treating SSc.
期刊介绍:
Beijing Da Xue Xue Bao Yi Xue Ban / Journal of Peking University (Health Sciences), established in 1959, is a national academic journal sponsored by Peking University, and its former name is Journal of Beijing Medical University. The coverage of the Journal includes basic medical sciences, clinical medicine, oral medicine, surgery, public health and epidemiology, pharmacology and pharmacy. Over the last few years, the Journal has published articles and reports covering major topics in the different special issues (e.g. research on disease genome, theory of drug withdrawal, mechanism and prevention of cardiovascular and cerebrovascular diseases, stomatology, orthopaedic, public health, urology and reproductive medicine). All the topics involve latest advances in medical sciences, hot topics in specific specialties, and prevention and treatment of major diseases.
The Journal has been indexed and abstracted by PubMed Central (PMC), MEDLINE/PubMed, EBSCO, Embase, Scopus, Chemical Abstracts (CA), Western Pacific Region Index Medicus (WPR), JSTChina, and almost all the Chinese sciences and technical index systems, including Chinese Science and Technology Paper Citation Database (CSTPCD), Chinese Science Citation Database (CSCD), China BioMedical Bibliographic Database (CBM), CMCI, Chinese Biological Abstracts, China National Academic Magazine Data-Base (CNKI), Wanfang Data (ChinaInfo), etc.