Identification of a sorting motif for Tspan3 to MHCII compartments in human B cells.

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Biomembranes Pub Date : 2024-12-15 DOI:10.1016/j.bbamem.2024.184406
Fabian Schwerdtfeger, Martin Ter Beest, Cesar A Perez-Martinez, Kris Raaijmakers, Philipp Michael Hagemann, Aina Martí Juan, Cornelia G Spruijt, Michiel Vermeulen, Sjoerd van Deventer, Annemiek B van Spriel
{"title":"Identification of a sorting motif for Tspan3 to MHCII compartments in human B cells.","authors":"Fabian Schwerdtfeger, Martin Ter Beest, Cesar A Perez-Martinez, Kris Raaijmakers, Philipp Michael Hagemann, Aina Martí Juan, Cornelia G Spruijt, Michiel Vermeulen, Sjoerd van Deventer, Annemiek B van Spriel","doi":"10.1016/j.bbamem.2024.184406","DOIUrl":null,"url":null,"abstract":"<p><p>Tetraspanins are four-transmembrane proteins that play fundamental roles in the immune system by enabling processes like migration, proliferation, signaling and protein trafficking. While the importance of cell surface tetraspanins has been established, the function of intracellular tetraspanins is less well understood. Here, we investigated the role of tetraspanin 3 (Tspan3) in lymphocytes. Tspan3 expression was low in T cells and high in B cells which increased during B cell activation. Tspan3 localized to late endosomal structures where it colocalized with major histocompatibility complex II (MHCII) in the MHCII compartment. There, inhibiting the formation of intraluminal vesicles (ILVs) showed that Tspan3 localization was not affected in contrast to its homologue CD63. Using a peptide-pulldown approach, we identified that Tspan3 interacts with AP2 via its C-terminus that harbors a YXXΦ-based sorting motif. Interestingly, mutating this motif did not impair Tspan3 localization. Instead, leucine 246 was required for its intracellular localization, identifying an unrecognized leucine-based sorting motif responsible for Tspan3 localization to MHCII compartment in B cells. Taken together, we report a new sorting motif for Tspan3 to MHCII compartments in human B cells.</p>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":" ","pages":"184406"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbamem.2024.184406","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tetraspanins are four-transmembrane proteins that play fundamental roles in the immune system by enabling processes like migration, proliferation, signaling and protein trafficking. While the importance of cell surface tetraspanins has been established, the function of intracellular tetraspanins is less well understood. Here, we investigated the role of tetraspanin 3 (Tspan3) in lymphocytes. Tspan3 expression was low in T cells and high in B cells which increased during B cell activation. Tspan3 localized to late endosomal structures where it colocalized with major histocompatibility complex II (MHCII) in the MHCII compartment. There, inhibiting the formation of intraluminal vesicles (ILVs) showed that Tspan3 localization was not affected in contrast to its homologue CD63. Using a peptide-pulldown approach, we identified that Tspan3 interacts with AP2 via its C-terminus that harbors a YXXΦ-based sorting motif. Interestingly, mutating this motif did not impair Tspan3 localization. Instead, leucine 246 was required for its intracellular localization, identifying an unrecognized leucine-based sorting motif responsible for Tspan3 localization to MHCII compartment in B cells. Taken together, we report a new sorting motif for Tspan3 to MHCII compartments in human B cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochimica et biophysica acta. Biomembranes
Biochimica et biophysica acta. Biomembranes 生物-生化与分子生物学
CiteScore
8.20
自引率
5.90%
发文量
175
审稿时长
2.3 months
期刊介绍: BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.
期刊最新文献
Differential insertion of arginine in saturated and unsaturated lipid vesicles. Characterization of intact FeoB in a lipid bilayer using styrene-maleic acid (SMA) copolymers. Identification of a sorting motif for Tspan3 to MHCII compartments in human B cells. Phase-separated cationic giant unilamellar vesicles as templates for the polymerization of tetraethyl orthosilicate (TEOS). Nanodomains enriched in arachidonic acid promote P2Y12 receptor oligomerization in the platelet plasma membrane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1