Oxidation of thiol groups in membrane proteins inhibits the fertilization ability and motility of sperm by suppressing calcium influx.

IF 3.1 2区 生物学 Q2 REPRODUCTIVE BIOLOGY Biology of Reproduction Pub Date : 2024-12-17 DOI:10.1093/biolre/ioae183
Satohiro Nakao, Kazuki Shirakado, Kana Tamura, Reiri Koga, Mayumi Ikeda-Imafuku, Yu Ishima, Naomi Nakagata, Toru Takeo
{"title":"Oxidation of thiol groups in membrane proteins inhibits the fertilization ability and motility of sperm by suppressing calcium influx.","authors":"Satohiro Nakao, Kazuki Shirakado, Kana Tamura, Reiri Koga, Mayumi Ikeda-Imafuku, Yu Ishima, Naomi Nakagata, Toru Takeo","doi":"10.1093/biolre/ioae183","DOIUrl":null,"url":null,"abstract":"<p><p>The redox state of thiol groups derived from cysteine residues in proteins regulates cellular functions. Changes in the redox state of thiol groups in the epididymis are involved in sperm maturation. Furthermore, the redox state of thiol groups in proteins changes during the process of sperm capacitation. However, the effect of the redox state of thiol groups in sperm membrane proteins on the fertilization ability of sperm has not been studied. Therefore, in this study, we oxidized thiol groups in sperm membrane proteins using 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB), which is a thiol-selective oxidizing agent, and examined the effect of oxidation of these thiol groups on the fertilization ability of sperm. Oocytes and sperm were obtained from C57BL/6 J mice, and Jcl:ICR mice were used as recipients for embryo transfer. Oxidation of the thiol groups by DTNB decreased the in vitro fertilization rate, and removal of the zona pellucida recovered the fertilization rate. DTNB treatment decreased the amplitude of the lateral head, which is an indicator of hyperactivation, and suppressed an increase in the intracellular calcium ion concentration, which is essential for hyperactivation. These findings suggest that oxidation of thiol groups in sperm membrane proteins can decrease the fertility of sperm by suppressing calcium ion influx and hyperactivation.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioae183","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The redox state of thiol groups derived from cysteine residues in proteins regulates cellular functions. Changes in the redox state of thiol groups in the epididymis are involved in sperm maturation. Furthermore, the redox state of thiol groups in proteins changes during the process of sperm capacitation. However, the effect of the redox state of thiol groups in sperm membrane proteins on the fertilization ability of sperm has not been studied. Therefore, in this study, we oxidized thiol groups in sperm membrane proteins using 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB), which is a thiol-selective oxidizing agent, and examined the effect of oxidation of these thiol groups on the fertilization ability of sperm. Oocytes and sperm were obtained from C57BL/6 J mice, and Jcl:ICR mice were used as recipients for embryo transfer. Oxidation of the thiol groups by DTNB decreased the in vitro fertilization rate, and removal of the zona pellucida recovered the fertilization rate. DTNB treatment decreased the amplitude of the lateral head, which is an indicator of hyperactivation, and suppressed an increase in the intracellular calcium ion concentration, which is essential for hyperactivation. These findings suggest that oxidation of thiol groups in sperm membrane proteins can decrease the fertility of sperm by suppressing calcium ion influx and hyperactivation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膜蛋白中硫醇基团的氧化会抑制钙的流入,从而抑制精子的受精能力和运动能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology of Reproduction
Biology of Reproduction 生物-生殖生物学
CiteScore
6.30
自引率
5.60%
发文量
214
审稿时长
1 months
期刊介绍: Biology of Reproduction (BOR) is the official journal of the Society for the Study of Reproduction and publishes original research on a broad range of topics in the field of reproductive biology, as well as reviews on topics of current importance or controversy. BOR is consistently one of the most highly cited journals publishing original research in the field of reproductive biology.
期刊最新文献
Correction to: The pathogenesis of endometriosis and adenomyosis: insights from single-cell RNA sequencing. Oxidation of thiol groups in membrane proteins inhibits the fertilization ability and motility of sperm by suppressing calcium influx. Increased EHD1 in trophoblasts causes RSM by activating TGFβ signaling†. Physiological function of gut microbiota and metabolome on successful pregnancy and lactation in the captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis)†. Hormonal profiles and biomarkers leading to parturition in cattle†.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1