Synchronization transitions in adaptive simplicial complexes with cooperative and competitive dynamics.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED Chaos Pub Date : 2024-12-01 DOI:10.1063/5.0226199
S Nirmala Jenifer, Dibakar Ghosh, Paulsamy Muruganandam
{"title":"Synchronization transitions in adaptive simplicial complexes with cooperative and competitive dynamics.","authors":"S Nirmala Jenifer, Dibakar Ghosh, Paulsamy Muruganandam","doi":"10.1063/5.0226199","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive network is a powerful presentation to describe different real-world phenomena. However, current models often neglect higher-order interactions (beyond pairwise interactions) and diverse adaptation types (cooperative and competitive) commonly observed in systems such as the human brain and social networks. This work addresses this gap by incorporating these factors into a model that explores their impact on collective properties such as synchronization. Through simplified network representations, we investigate how the simultaneous presence of cooperative and competitive adaptations influences phase transitions. Our findings reveal a transition from first-order to second-order synchronization as the strength of higher-order interactions increases under competitive adaptation. We also demonstrate the possibility of synchronization even without pairwise interactions, provided there is strong enough higher-order coupling. When only competitive adaptations are present, the system exhibits second-order-like phase transitions and clustering. Conversely, with a combination of cooperative and competitive adaptations, the system undergoes a first-order-like phase transition, characterized by a sharp transition to the synchronized state without reverting to an incoherent state during backward transitions. The specific nature of these second-order-like transitions varies depending on the coupling strengths and mean degrees. With our model, we can control not only when the system synchronizes but also the way the system goes to synchronization.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0226199","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptive network is a powerful presentation to describe different real-world phenomena. However, current models often neglect higher-order interactions (beyond pairwise interactions) and diverse adaptation types (cooperative and competitive) commonly observed in systems such as the human brain and social networks. This work addresses this gap by incorporating these factors into a model that explores their impact on collective properties such as synchronization. Through simplified network representations, we investigate how the simultaneous presence of cooperative and competitive adaptations influences phase transitions. Our findings reveal a transition from first-order to second-order synchronization as the strength of higher-order interactions increases under competitive adaptation. We also demonstrate the possibility of synchronization even without pairwise interactions, provided there is strong enough higher-order coupling. When only competitive adaptations are present, the system exhibits second-order-like phase transitions and clustering. Conversely, with a combination of cooperative and competitive adaptations, the system undergoes a first-order-like phase transition, characterized by a sharp transition to the synchronized state without reverting to an incoherent state during backward transitions. The specific nature of these second-order-like transitions varies depending on the coupling strengths and mean degrees. With our model, we can control not only when the system synchronizes but also the way the system goes to synchronization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有合作和竞争动态的自适应简单复合物中的同步转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
期刊最新文献
Traveling waves in an ensemble of excitable oscillators: The interplay of memristive coupling and noise. Tuning domain wall dynamics in a notched ferromagnetic nanostrip with Rashba effect. Unsupervised data-driven response regime exploration and identification for dynamical systems. Zero-determinant strategy for distributed state estimation against eavesdropping attacks. A dynamical study of Hilda asteroids in the Circular and Elliptic RTBP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1