Attachment and removal of porcine rotavirus (PRV) and Tulane virus (TV) on fresh and artificial phylloplanes of Romaine lettuce and Carmel spinach as affected by ultrasonication in combination with oxidant- or surfactant-based sanitizer(s).
Sindy Palma-Salgado, Kang-Mo Ku, John A Juvik, Elbashir Araud, Thanh H Nguyen, Hao Feng
{"title":"Attachment and removal of porcine rotavirus (PRV) and Tulane virus (TV) on fresh and artificial phylloplanes of Romaine lettuce and Carmel spinach as affected by ultrasonication in combination with oxidant- or surfactant-based sanitizer(s).","authors":"Sindy Palma-Salgado, Kang-Mo Ku, John A Juvik, Elbashir Araud, Thanh H Nguyen, Hao Feng","doi":"10.1016/j.ijfoodmicro.2024.111020","DOIUrl":null,"url":null,"abstract":"<p><p>This work examined the attachment of porcine rotavirus (PRV) and Tulane virus (TV), a surrogate for human norovirus, to fresh and artificial phylloplanes of Romaine lettuce and Carmel spinach. The effect of produce type, sanitizer, and ultrasound treatment on removal of PRV and TV from produce and artificial surfaces was also investigated. Sanitization was performed with two oxidant-based sanitizers (chlorine and peroxyacetic acid) and one surfactant-based sanitizer (0.5 % malic acid +0.05 % thiamine lauryl sulfate) in combination with ultrasound. PRV and TV were spot inoculated to fresh and artificial produce surfaces and treated for 1 min with a sanitizing solution with and without ultrasound. No significant differences were observed in the attachment of PRV and TV to fresh and artificial leaf surfaces. The removal of PRV from produce leaves treated by different sanitizers was significantly higher than that of TV. No difference in viral removal between the fresh and artificial produce surfaces was found. The addition of ultrasound significantly increased viral removal from both type of produce surfaces. The removal of virus attached to fresh and artificial phylloplanes was virus-type, sanitizer-type, and produce cultivar dependent. Artificial phylloplanes may provide a novel platform for screening of sanitizers in food safety applications.</p>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"429 ","pages":"111020"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.ijfoodmicro.2024.111020","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work examined the attachment of porcine rotavirus (PRV) and Tulane virus (TV), a surrogate for human norovirus, to fresh and artificial phylloplanes of Romaine lettuce and Carmel spinach. The effect of produce type, sanitizer, and ultrasound treatment on removal of PRV and TV from produce and artificial surfaces was also investigated. Sanitization was performed with two oxidant-based sanitizers (chlorine and peroxyacetic acid) and one surfactant-based sanitizer (0.5 % malic acid +0.05 % thiamine lauryl sulfate) in combination with ultrasound. PRV and TV were spot inoculated to fresh and artificial produce surfaces and treated for 1 min with a sanitizing solution with and without ultrasound. No significant differences were observed in the attachment of PRV and TV to fresh and artificial leaf surfaces. The removal of PRV from produce leaves treated by different sanitizers was significantly higher than that of TV. No difference in viral removal between the fresh and artificial produce surfaces was found. The addition of ultrasound significantly increased viral removal from both type of produce surfaces. The removal of virus attached to fresh and artificial phylloplanes was virus-type, sanitizer-type, and produce cultivar dependent. Artificial phylloplanes may provide a novel platform for screening of sanitizers in food safety applications.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.