{"title":"Continuous Glucose Monitoring in Comorbid Dementia and Diabetes: The Evidence So Far.","authors":"Busra Donat Ergin, Kieran Gadsby-Davis, Katharina Mattishent, Ketan Dhatariya, Nikki Garner, Michael Hornberger","doi":"10.1177/19322968241301058","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type 2 diabetes mellitus (T2DM) and dementia are two of the leading chronic diseases in aging and are known to influence each other's disease progression. There is well-established evidence that T2DM increases the risk for cognitive decline and dementia. At the same time, people with cognitive changes or dementia can find it difficult to manage their diabetes, resulting in hyper- or hypoglycemic events which can exacerbate the dementia disease progression further. Monitoring of glucose variability is, therefore, of critical importance during aging and when people with T2DM develop dementia. The advent of continuous glucose monitoring (CGM) has allowed the monitoring of glucose variability in T2DM more closely. The CGM seems to be highly feasible and acceptable to use in older people with T2DM and has been shown to significantly reduce their hypoglycemic events, often resulting in falls. Less is known as to whether CGM can have a similar beneficial effect on people with T2DM who have cognitive impairment or dementia in community or hospital settings.</p><p><strong>Aims: </strong>The current perspective will explore how CGM has made an impact on T2DM management in older people and those with comorbid cognitive impairment or dementia. We will further explore opportunities and challenges of using CGM in comorbid T2DM and dementia in community and hospital settings.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"19322968241301058"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241301058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Type 2 diabetes mellitus (T2DM) and dementia are two of the leading chronic diseases in aging and are known to influence each other's disease progression. There is well-established evidence that T2DM increases the risk for cognitive decline and dementia. At the same time, people with cognitive changes or dementia can find it difficult to manage their diabetes, resulting in hyper- or hypoglycemic events which can exacerbate the dementia disease progression further. Monitoring of glucose variability is, therefore, of critical importance during aging and when people with T2DM develop dementia. The advent of continuous glucose monitoring (CGM) has allowed the monitoring of glucose variability in T2DM more closely. The CGM seems to be highly feasible and acceptable to use in older people with T2DM and has been shown to significantly reduce their hypoglycemic events, often resulting in falls. Less is known as to whether CGM can have a similar beneficial effect on people with T2DM who have cognitive impairment or dementia in community or hospital settings.
Aims: The current perspective will explore how CGM has made an impact on T2DM management in older people and those with comorbid cognitive impairment or dementia. We will further explore opportunities and challenges of using CGM in comorbid T2DM and dementia in community and hospital settings.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.