A Machine Learning Model to Predict De Novo Hepatocellular Carcinoma Beyond Year 5 of Antiviral Therapy in Patients With Chronic Hepatitis B.

IF 6 2区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Liver International Pub Date : 2024-12-18 DOI:10.1111/liv.16139
Yeonjung Ha, Seungseok Lee, Jihye Lim, Kwanjoo Lee, Young Eun Chon, Joo Ho Lee, Kwan Sik Lee, Kang Mo Kim, Ju Hyun Shim, Danbi Lee, Dong Keon Yon, Jinseok Lee, Han Chu Lee
{"title":"A Machine Learning Model to Predict De Novo Hepatocellular Carcinoma Beyond Year 5 of Antiviral Therapy in Patients With Chronic Hepatitis B.","authors":"Yeonjung Ha, Seungseok Lee, Jihye Lim, Kwanjoo Lee, Young Eun Chon, Joo Ho Lee, Kwan Sik Lee, Kang Mo Kim, Ju Hyun Shim, Danbi Lee, Dong Keon Yon, Jinseok Lee, Han Chu Lee","doi":"10.1111/liv.16139","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>This study aims to develop and validate a machine learning (ML) model predicting hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB) patients after the first 5 years of entecavir (ETV) or tenofovir (TFV) therapy.</p><p><strong>Methods: </strong>CHB patients treated with ETV/TFV for > 5 years and not diagnosed with HCC during the first 5 years of therapy were selected from two hospitals. We used 36 variables, including baseline characteristics (age, sex, cirrhosis, and type of antiviral agent) and laboratory values (at baseline, at 5 years, and changes between 5 years) for model development. Five machine learning algorithms were applied to the training dataset and internally validated using a test dataset. External validation was performed.</p><p><strong>Results: </strong>In years 5-15, a total of 279/5908 (4.7%) and 25/562 (4.5%) patients developed HCC in the derivation and external validation cohorts, respectively. In the training dataset (n = 4726), logistic regression showed the highest area under the receiver operating curve (AUC) of 0.803 and a balanced accuracy of 0.735, outperforming other ML algorithms. An ensemble model combining logistic regression and random forest performed best (AUC, 0.811 and balanced accuracy, 0.754). The results from the test dataset (n = 1182) verified the good performance of the ensemble model (AUC, 0.784 and balanced accuracy, 0.712). External validation confirmed the predictive accuracy of our ensemble model (AUC, 0.862 and balanced accuracy, 0.771). A web-based calculator was developed (http://ai-wm.khu.ac.kr/HCC/).</p><p><strong>Conclusions: </strong>The proposed ML model excellently predicted HCC risk beyond year 5 of ETV/TFV therapy and, therefore, could facilitate individualised HCC surveillance based on risk stratification.</p>","PeriodicalId":18101,"journal":{"name":"Liver International","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liver International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/liv.16139","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims: This study aims to develop and validate a machine learning (ML) model predicting hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB) patients after the first 5 years of entecavir (ETV) or tenofovir (TFV) therapy.

Methods: CHB patients treated with ETV/TFV for > 5 years and not diagnosed with HCC during the first 5 years of therapy were selected from two hospitals. We used 36 variables, including baseline characteristics (age, sex, cirrhosis, and type of antiviral agent) and laboratory values (at baseline, at 5 years, and changes between 5 years) for model development. Five machine learning algorithms were applied to the training dataset and internally validated using a test dataset. External validation was performed.

Results: In years 5-15, a total of 279/5908 (4.7%) and 25/562 (4.5%) patients developed HCC in the derivation and external validation cohorts, respectively. In the training dataset (n = 4726), logistic regression showed the highest area under the receiver operating curve (AUC) of 0.803 and a balanced accuracy of 0.735, outperforming other ML algorithms. An ensemble model combining logistic regression and random forest performed best (AUC, 0.811 and balanced accuracy, 0.754). The results from the test dataset (n = 1182) verified the good performance of the ensemble model (AUC, 0.784 and balanced accuracy, 0.712). External validation confirmed the predictive accuracy of our ensemble model (AUC, 0.862 and balanced accuracy, 0.771). A web-based calculator was developed (http://ai-wm.khu.ac.kr/HCC/).

Conclusions: The proposed ML model excellently predicted HCC risk beyond year 5 of ETV/TFV therapy and, therefore, could facilitate individualised HCC surveillance based on risk stratification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测慢性乙型肝炎患者抗病毒治疗 5 年后新发肝细胞癌的机器学习模型。
背景和目的:本研究旨在开发和验证一种机器学习(ML)模型,预测慢性乙型肝炎(CHB)患者在接受恩替卡韦(ETV)或替诺福韦(TFV)治疗后5年的肝细胞癌(HCC)。方法:选择两家医院接受ETV/TFV治疗50年、治疗前5年未确诊HCC的CHB患者。我们使用了36个变量,包括基线特征(年龄、性别、肝硬化和抗病毒药物类型)和实验室值(基线、5年和5年之间的变化)用于模型开发。五种机器学习算法应用于训练数据集,并使用测试数据集进行内部验证。进行外部验证。结果:在5-15年,衍生和外部验证队列中分别有279/5908(4.7%)和25/562(4.5%)患者发生HCC。在训练数据集(n = 4726)中,逻辑回归显示接收者工作曲线下的最高面积(AUC)为0.803,平衡精度为0.735,优于其他ML算法。logistic回归与随机森林相结合的集成模型表现最佳(AUC为0.811,平衡精度为0.754)。测试数据集(n = 1182)的结果验证了集成模型的良好性能(AUC为0.784,平衡精度为0.712)。外部验证证实了我们的集成模型的预测精度(AUC为0.862,平衡精度为0.771)。开发了一个基于网络的计算器(http://ai-wm.khu.ac.kr/HCC/).Conclusions):提出的ML模型可以很好地预测ETV/TFV治疗5年后的HCC风险,因此可以促进基于风险分层的个体化HCC监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Liver International
Liver International 医学-胃肠肝病学
CiteScore
13.90
自引率
4.50%
发文量
348
审稿时长
2 months
期刊介绍: Liver International promotes all aspects of the science of hepatology from basic research to applied clinical studies. Providing an international forum for the publication of high-quality original research in hepatology, it is an essential resource for everyone working on normal and abnormal structure and function in the liver and its constituent cells, including clinicians and basic scientists involved in the multi-disciplinary field of hepatology. The journal welcomes articles from all fields of hepatology, which may be published as original articles, brief definitive reports, reviews, mini-reviews, images in hepatology and letters to the Editor.
期刊最新文献
Issue Information FGF21 Analogues in Patients With Metabolic Diseases: Systematic Review and Meta-Analysis of Randomised Controlled Trials Methylprednisolone-Induced Liver Injury: Insights From FAERS Analysis and Comparison With DILIN Findings Refining the Safety Perspective of Bulevirtide in Chronic Hepatitis Delta Management Acute and acute-on-chronic liver failure: Pathogenesis, management and perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1