Intertwining of Cellular Osmotic Stress Handling Mechanisms and Heavy Metal Accumulation.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biotechnology Pub Date : 2024-12-17 DOI:10.1007/s12033-024-01351-y
Rosina Sánchez-Thomas, Mariel Hernández-Garnica, Juan Carlos Granados-Rivas, Emma Saavedra, Ignacio Peñalosa-Castro, Sara Rodríguez-Enríquez, Rafael Moreno-Sánchez
{"title":"Intertwining of Cellular Osmotic Stress Handling Mechanisms and Heavy Metal Accumulation.","authors":"Rosina Sánchez-Thomas, Mariel Hernández-Garnica, Juan Carlos Granados-Rivas, Emma Saavedra, Ignacio Peñalosa-Castro, Sara Rodríguez-Enríquez, Rafael Moreno-Sánchez","doi":"10.1007/s12033-024-01351-y","DOIUrl":null,"url":null,"abstract":"<p><p>Osmoregulation mechanisms are engaged in the detoxification and accumulation of heavy metals in plants, microalgae and other microorganisms. The present review paper analyzes osmotic resistance organisms and their heavy metal accumulation mechanisms closely related to osmoregulation. In prokaryotic and eukaryotic microorganisms, such as the green algae-like protist Euglena, osmotic and heavy metal stresses share similar cell responses and mechanisms. Likewise, some plants have developed specific mechanisms associated to water stress induced by salinity, flooding, or drought, which are also activated under heavy metal stress. Thus, synthesis of osmo-metabolites and strategies to maintain stable the intracellular water content under heavy metal exposure induce a state of apparent drought by blocking the water maintenance systems. Heavy metals affect the cellular redox state, triggering signaling pathways for intracellular water maintenance, which are mediated by the concentration of reactive oxygen species. Hence, cellular responses and mechanisms associated with osmotic stress, once fully elucidated, represent new opportunities to improve mechanistic strategies for bioremediation of heavy metal-polluted sites.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01351-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osmoregulation mechanisms are engaged in the detoxification and accumulation of heavy metals in plants, microalgae and other microorganisms. The present review paper analyzes osmotic resistance organisms and their heavy metal accumulation mechanisms closely related to osmoregulation. In prokaryotic and eukaryotic microorganisms, such as the green algae-like protist Euglena, osmotic and heavy metal stresses share similar cell responses and mechanisms. Likewise, some plants have developed specific mechanisms associated to water stress induced by salinity, flooding, or drought, which are also activated under heavy metal stress. Thus, synthesis of osmo-metabolites and strategies to maintain stable the intracellular water content under heavy metal exposure induce a state of apparent drought by blocking the water maintenance systems. Heavy metals affect the cellular redox state, triggering signaling pathways for intracellular water maintenance, which are mediated by the concentration of reactive oxygen species. Hence, cellular responses and mechanisms associated with osmotic stress, once fully elucidated, represent new opportunities to improve mechanistic strategies for bioremediation of heavy metal-polluted sites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞渗透胁迫处理机制与重金属积累的相互交织。
渗透调节机制参与了植物、微藻和其他微生物对重金属的解毒和积累。本文综述了与渗透调节密切相关的渗透抗性生物及其重金属积累机制。在原核和真核微生物中,如绿藻样原生生物绿藻,渗透和重金属胁迫具有相似的细胞反应和机制。同样,一些植物已经发展出与盐、洪水或干旱引起的水分胁迫相关的特定机制,这些机制也在重金属胁迫下被激活。因此,在重金属暴露下,渗透代谢物的合成和维持细胞内含水量稳定的策略通过阻断水维持系统导致了明显的干旱状态。重金属影响细胞氧化还原状态,触发细胞内水分维持的信号通路,这是由活性氧浓度介导的。因此,与渗透胁迫相关的细胞反应和机制一旦被完全阐明,将为改善重金属污染场地的生物修复机制策略提供新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
期刊最新文献
Investigation of Circular RNA Expression Profiles in Ultrasound-guided Incomplete Radiofrequency Ablation Transplanted Tumor Models of Human Liver Cancer. Endoplasmic Reticulum Stress Promotes Neuronal Damage in Neonatal Hypoxic-Ischemic Brain Damage by Inducing Ferroptosis. An Analysis Regarding the Association Between DAZ Interacting Zinc Finger Protein 1 (DZIP1) and Colorectal Cancer (CRC). Integrin β4 Regulates Cell Migration of Lung Adenocarcinoma Through FAK Signaling. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1