A consensus platform for antibody characterization.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Protocols Pub Date : 2024-12-17 DOI:10.1038/s41596-024-01095-8
Riham Ayoubi, Joel Ryan, Sara Gonzalez Bolivar, Charles Alende, Vera Ruiz Moleon, Maryam Fotouhi, Mona Alqazzaz, Kathleen Southern, Walaa Alshafie, Matt R Baker, Alexander R Ball, Danielle Callahan, Jeffery A Cooper, Katherine Crosby, Kevin J Harvey, Douglas W Houston, Ravindran Kumaran, Meghan Rego, Christine Schofield, Hai Wu, Michael S Biddle, Claire M Brown, Richard A Kahn, Anita Bandrowski, Harvinder S Virk, Aled M Edwards, Peter S McPherson, Carl Laflamme
{"title":"A consensus platform for antibody characterization.","authors":"Riham Ayoubi, Joel Ryan, Sara Gonzalez Bolivar, Charles Alende, Vera Ruiz Moleon, Maryam Fotouhi, Mona Alqazzaz, Kathleen Southern, Walaa Alshafie, Matt R Baker, Alexander R Ball, Danielle Callahan, Jeffery A Cooper, Katherine Crosby, Kevin J Harvey, Douglas W Houston, Ravindran Kumaran, Meghan Rego, Christine Schofield, Hai Wu, Michael S Biddle, Claire M Brown, Richard A Kahn, Anita Bandrowski, Harvinder S Virk, Aled M Edwards, Peter S McPherson, Carl Laflamme","doi":"10.1038/s41596-024-01095-8","DOIUrl":null,"url":null,"abstract":"<p><p>Antibody-based research applications are critical for biological discovery. Yet there are no industry standards for comparing the performance of antibodies in various applications. We describe a knockout cell line-based antibody characterization platform, developed and approved jointly by industry and academic researchers, that enables the systematic comparison of antibody performance in western blot, immunoprecipitation and immunofluorescence. The scalable protocols, which require minimal technological resources, consist of (1) the identification of appropriate cell lines for antibody characterization studies, (2) development/contribution of isogenic knockout controls, and (3) a series of antibody characterization procedures focused on the most common applications of antibodies in research. We provide examples of expected outcomes to guide antibody users in evaluating antibody performance. Central to our approach is advocating for transparent and open data sharing, enabling a community effort to identify specific antibodies for all human proteins. Mid-level graduate students with training in biochemistry and prior experience in cell culture and microscopy can complete the protocols for a specific protein within 1 month while working part-time on this effort. Antibody characterization is needed to meet standards for resource validation and data reproducibility, which are increasingly required by journals and funding agencies.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01095-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Antibody-based research applications are critical for biological discovery. Yet there are no industry standards for comparing the performance of antibodies in various applications. We describe a knockout cell line-based antibody characterization platform, developed and approved jointly by industry and academic researchers, that enables the systematic comparison of antibody performance in western blot, immunoprecipitation and immunofluorescence. The scalable protocols, which require minimal technological resources, consist of (1) the identification of appropriate cell lines for antibody characterization studies, (2) development/contribution of isogenic knockout controls, and (3) a series of antibody characterization procedures focused on the most common applications of antibodies in research. We provide examples of expected outcomes to guide antibody users in evaluating antibody performance. Central to our approach is advocating for transparent and open data sharing, enabling a community effort to identify specific antibodies for all human proteins. Mid-level graduate students with training in biochemistry and prior experience in cell culture and microscopy can complete the protocols for a specific protein within 1 month while working part-time on this effort. Antibody characterization is needed to meet standards for resource validation and data reproducibility, which are increasingly required by journals and funding agencies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗体特征描述的共识平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
期刊最新文献
A consensus platform for antibody characterization. Author Correction: Purification of tubulin with controlled post-translational modifications by polymerization-depolymerization cycles. YCharOS protocol for antibody validation. Integration of large genetic payloads using prime editing and site-specific integrases. Precise kilobase-scale genomic insertions in mammalian cells using PASTE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1