Jamison D Law, Yuan Gao, Vicki H Wysocki, Venkat Gopalan
{"title":"Design of a yeast SUMO tag to eliminate internal translation initiation.","authors":"Jamison D Law, Yuan Gao, Vicki H Wysocki, Venkat Gopalan","doi":"10.1002/pro.5256","DOIUrl":null,"url":null,"abstract":"<p><p>After overexpression in a suitable host, recombinant protein purification often relies on affinity (e.g., poly-histidine) and solubility-enhancing (e.g., small ubiquitin-like-modifier [SUMO]) tags. Following purification, these tags are removed to avoid their interference with target protein structure and function. The wide use of N-terminal His<sub>6</sub>-SUMO fusions is partly due to efficient cleavage of the SUMO tag's C-terminal Gly-Gly motif by the Ulp1 SUMO protease and generation of the native N-terminus of the target protein. While adopting this system to purify the Salmonella homodimeric FraB deglycase, we discovered that Shine-Dalgarno (SD) sequences in the eukaryotic SUMO tag resulted in truncated proteins. This finding has precedents for synthesis of partial proteins in Escherichia coli from cryptic ribosome-binding sites within eukaryotic coding sequences. The SUMO open reading frame has two \"GGNGGN\" motifs that resemble SD sequences, one of which encodes the Gly-Gly motif required for Ulp1 cleavage. By mutating these SD sequences, we generated SUMO<sup>NIT</sup> (no internal translation), a variant that eliminated production of the truncated proteins without affecting the levels of full-length His<sub>6</sub>-SUMO-FraB or Ulp1 cleavage. SUMO<sup>NIT</sup> should be part of the toolkit for enhancing SUMO fusion protein yield, purity, and homogeneity (especially for homo-oligomers). Moreover, we showcase the value of native mass spectrometry in revealing the complications that arise from generation of truncated proteins, as well as oxidation events and protease inhibitor adducts, which are indiscernible by commonly employed lower resolution methods.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 1","pages":"e5256"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5256","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
After overexpression in a suitable host, recombinant protein purification often relies on affinity (e.g., poly-histidine) and solubility-enhancing (e.g., small ubiquitin-like-modifier [SUMO]) tags. Following purification, these tags are removed to avoid their interference with target protein structure and function. The wide use of N-terminal His6-SUMO fusions is partly due to efficient cleavage of the SUMO tag's C-terminal Gly-Gly motif by the Ulp1 SUMO protease and generation of the native N-terminus of the target protein. While adopting this system to purify the Salmonella homodimeric FraB deglycase, we discovered that Shine-Dalgarno (SD) sequences in the eukaryotic SUMO tag resulted in truncated proteins. This finding has precedents for synthesis of partial proteins in Escherichia coli from cryptic ribosome-binding sites within eukaryotic coding sequences. The SUMO open reading frame has two "GGNGGN" motifs that resemble SD sequences, one of which encodes the Gly-Gly motif required for Ulp1 cleavage. By mutating these SD sequences, we generated SUMONIT (no internal translation), a variant that eliminated production of the truncated proteins without affecting the levels of full-length His6-SUMO-FraB or Ulp1 cleavage. SUMONIT should be part of the toolkit for enhancing SUMO fusion protein yield, purity, and homogeneity (especially for homo-oligomers). Moreover, we showcase the value of native mass spectrometry in revealing the complications that arise from generation of truncated proteins, as well as oxidation events and protease inhibitor adducts, which are indiscernible by commonly employed lower resolution methods.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).