Esteban Domingo, Brenda Martínez-González, Pilar Somovilla, Carlos García-Crespo, María Eugenia Soria, Ana Isabel de Ávila, Ignacio Gadea, Celia Perales
{"title":"A general and biomedical perspective of viral quasispecies.","authors":"Esteban Domingo, Brenda Martínez-González, Pilar Somovilla, Carlos García-Crespo, María Eugenia Soria, Ana Isabel de Ávila, Ignacio Gadea, Celia Perales","doi":"10.1261/rna.080280.124","DOIUrl":null,"url":null,"abstract":"<p><p>Viral quasispecies refers to the complex and dynamic mutant distributions (also termed mutant spectra, clouds or swarms) that arise as a result of high error rates during RNA genome replication. The mutant spectrum of individual RNA virus populations is modified by continuous generation of variant genomes, competition and interactions among them, environmental influences, bottleneck events, and bloc transmission of viral particles. Quasispecies dynamics provides a new perspective on how viruses adapt, evolve and cause disease, and sheds light on strategies to combat them. Molecular flexibility, together with ample opportunity of mutant cloud traffic in our global world, are key ingredients of viral disease emergences, as exemplified by the recent COVID-19 pandemic. In the present article we present a brief overview of the molecular basis of mutant swarm formation and dynamics, and how the latter relates to viral disease and epidemic spread. We outline future challenges derived of the highly diverse cellular world in which viruses are necessarily installed.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080280.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Viral quasispecies refers to the complex and dynamic mutant distributions (also termed mutant spectra, clouds or swarms) that arise as a result of high error rates during RNA genome replication. The mutant spectrum of individual RNA virus populations is modified by continuous generation of variant genomes, competition and interactions among them, environmental influences, bottleneck events, and bloc transmission of viral particles. Quasispecies dynamics provides a new perspective on how viruses adapt, evolve and cause disease, and sheds light on strategies to combat them. Molecular flexibility, together with ample opportunity of mutant cloud traffic in our global world, are key ingredients of viral disease emergences, as exemplified by the recent COVID-19 pandemic. In the present article we present a brief overview of the molecular basis of mutant swarm formation and dynamics, and how the latter relates to viral disease and epidemic spread. We outline future challenges derived of the highly diverse cellular world in which viruses are necessarily installed.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.