Ying Lu, Jun Du, Shicheng Peng, Ying Wang, Yongtao Xiao
{"title":"Therapeutic potential of isoallolithocholic acid in methicillin-resistant Staphylococcus Aureus peritoneal infection.","authors":"Ying Lu, Jun Du, Shicheng Peng, Ying Wang, Yongtao Xiao","doi":"10.1038/s41429-024-00800-9","DOIUrl":null,"url":null,"abstract":"<p><p>A significant increase in multidrug-resistant Methicillin-resistant Staphylococcus aureus (MRSA) infections has made it crucial to explore new antimicrobial drugs and strategies. Emerging evidence suggests that the bile acid metabolite isoallolithocholic acid (isoallo-LCA) may contribute to reducing the risk of infection among centenarians. However, its precise role remains somewhat ambiguous and necessitates further investigation. This study aims to investigate the roles of isoallo-LCA in MRSA-associated peritoneal infection. The effects of isoallo-LCA on peritoneal infection are examined in a MRSA-induced peritoneal infected model. Antibacterial activity, biofilm formation assay, and bacterial membrane permeability experiments are conducted to explore the mechanisms involved. Our findings demonstrate that isoallo-LCA effectively suppresses the replication of MRSA with minimal adverse effects on mammalian cells. Furthermore, isoallo-LCA significantly inhibits the formation of bacterial biofilms and eradicates existing bacterial biofilms of MRSA. Administration of isoallo-LCA reduces MRSA colonization in peritoneal organs and alleviates peritonitis-related inflammation and damage in a MRSA-infected peritonitis mice. Mechanistically, isoallo-LCA exhibits potent bactericidal activity against MRSA by disrupting the integrity and permeability of bacterial cells. In addition, isoallo-LCA also enhances the macrophage phagocytosis. In conclusion, our results suggest that isoallo-LCA could be an effective treatment for infections caused by MRSA.</p>","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41429-024-00800-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A significant increase in multidrug-resistant Methicillin-resistant Staphylococcus aureus (MRSA) infections has made it crucial to explore new antimicrobial drugs and strategies. Emerging evidence suggests that the bile acid metabolite isoallolithocholic acid (isoallo-LCA) may contribute to reducing the risk of infection among centenarians. However, its precise role remains somewhat ambiguous and necessitates further investigation. This study aims to investigate the roles of isoallo-LCA in MRSA-associated peritoneal infection. The effects of isoallo-LCA on peritoneal infection are examined in a MRSA-induced peritoneal infected model. Antibacterial activity, biofilm formation assay, and bacterial membrane permeability experiments are conducted to explore the mechanisms involved. Our findings demonstrate that isoallo-LCA effectively suppresses the replication of MRSA with minimal adverse effects on mammalian cells. Furthermore, isoallo-LCA significantly inhibits the formation of bacterial biofilms and eradicates existing bacterial biofilms of MRSA. Administration of isoallo-LCA reduces MRSA colonization in peritoneal organs and alleviates peritonitis-related inflammation and damage in a MRSA-infected peritonitis mice. Mechanistically, isoallo-LCA exhibits potent bactericidal activity against MRSA by disrupting the integrity and permeability of bacterial cells. In addition, isoallo-LCA also enhances the macrophage phagocytosis. In conclusion, our results suggest that isoallo-LCA could be an effective treatment for infections caused by MRSA.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.