Dylan Koprivec, Cedric Belanger, Luc Beaulieu, Philippe Y Chatigny, Anatoly Rosenfeld, Dean Cutajar, Marco Petasecca, Andrew Howie, Joseph Bucci, Joel Poder
{"title":"Impact of robust optimization on patient specific error thresholds for high dose rate prostate brachytherapy source tracking.","authors":"Dylan Koprivec, Cedric Belanger, Luc Beaulieu, Philippe Y Chatigny, Anatoly Rosenfeld, Dean Cutajar, Marco Petasecca, Andrew Howie, Joseph Bucci, Joel Poder","doi":"10.1016/j.brachy.2024.11.012","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to compare the effect of catheter shift errors and determine patient specific error thresholds (PSETs) for different high dose rate prostate brachytherapy (HDRPBT) plans generated by different forms of inverse optimization.</p><p><strong>Methods: </strong>Three plans were generated for 50 HDRPBT patients and PSETs were determined for each of the 3 plans. Plan 1 was the original Oncentra Prostate (v4.2.2.4, Elekta Brachytherapy, Veenendaal, The Netherlands) plan, the second plan used the graphical processor unit multi-criteria optimization (gMCO) algorithm, and plan 3 used gMCO but had a robustness parameter as an additional optimization criterion (gMCOr). gMCO and gMCOr plans were selected from a pool of 2000 pareto optimal plans. gMCO plan selection involved increasing prostate V100% and reducing rectum Dmax/urethra D01.cc progressively until only 1 plan remained. The gMCOr plan was the most robust plan (using robustness parameter) that met the clinical DVH criteria (V100% ≥ 95%, rectum Dmax ≤ 80%, urethra D0.1cc ≤ 118%). PSETs were determined using catheter shift software.</p><p><strong>Results: </strong>The initial dose volume histogram (DVH) characteristics showed all 50 patient plans met a prostate V100% > 95% and resulted in significant reduction in rectum Dmax and urethra D0.1cc for gMCO and gMCOr plans. No single plan showed benefits in PSETs for all shift directions compared to the other plans, however gMCO and gMCOr plans exhibit the best initial DVH characteristics assuming no errors occur. The robustness parameter showed no significant impact when considered in plan optimization.</p><p><strong>Conclusions: </strong>PSETs were found to be equivalent regardless of optimization method. Indicating, no single optimization method can significantly increase the patient specific thresholds.</p>","PeriodicalId":93914,"journal":{"name":"Brachytherapy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brachytherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.brachy.2024.11.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The purpose of this study was to compare the effect of catheter shift errors and determine patient specific error thresholds (PSETs) for different high dose rate prostate brachytherapy (HDRPBT) plans generated by different forms of inverse optimization.
Methods: Three plans were generated for 50 HDRPBT patients and PSETs were determined for each of the 3 plans. Plan 1 was the original Oncentra Prostate (v4.2.2.4, Elekta Brachytherapy, Veenendaal, The Netherlands) plan, the second plan used the graphical processor unit multi-criteria optimization (gMCO) algorithm, and plan 3 used gMCO but had a robustness parameter as an additional optimization criterion (gMCOr). gMCO and gMCOr plans were selected from a pool of 2000 pareto optimal plans. gMCO plan selection involved increasing prostate V100% and reducing rectum Dmax/urethra D01.cc progressively until only 1 plan remained. The gMCOr plan was the most robust plan (using robustness parameter) that met the clinical DVH criteria (V100% ≥ 95%, rectum Dmax ≤ 80%, urethra D0.1cc ≤ 118%). PSETs were determined using catheter shift software.
Results: The initial dose volume histogram (DVH) characteristics showed all 50 patient plans met a prostate V100% > 95% and resulted in significant reduction in rectum Dmax and urethra D0.1cc for gMCO and gMCOr plans. No single plan showed benefits in PSETs for all shift directions compared to the other plans, however gMCO and gMCOr plans exhibit the best initial DVH characteristics assuming no errors occur. The robustness parameter showed no significant impact when considered in plan optimization.
Conclusions: PSETs were found to be equivalent regardless of optimization method. Indicating, no single optimization method can significantly increase the patient specific thresholds.