Dunzhu Luosang, Yang Gao, Liang Hong, Nan Jiang, Wangdui Basang
{"title":"Transcriptome analysis reveals the potential mechanism of plateau environment on muscle growth and development in yak.","authors":"Dunzhu Luosang, Yang Gao, Liang Hong, Nan Jiang, Wangdui Basang","doi":"10.1016/j.cbd.2024.101395","DOIUrl":null,"url":null,"abstract":"<p><p>Yak meat plays a significant economic role for yaks. The unique environment of the Qinghai-Tibet plateau profoundly impacts the meat production performance of yaks. Yet, the regulatory mechanisms influencing muscle growth and development in yaks within this plateau environment remain poorly understood. The study investigated the transcriptome gene expression in the buttock muscle tissue of yaks residing at varying altitudes. It revealed 516 differentially expressed genes in the buttock muscle tissue of yaks at high altitude (4500 m) and low altitude (3000 m). The Gene Ontology (GO) annotation indicated that these differentially expressed genes primarily function in RNA binding, identical protein binding, nucleotide binding, pre-mRNA branch point binding, unfolded protein binding, insulin receptor binding, fructose 1,6-bisphosphate 1-phosphatase activity, collagen binding, platelet-derived growth factor receptor binding, and sodium channel inhibitor activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the differentially expressed genes predominantly participated in pathways such as the spliceosome, aminoacyl tRNA biosynthesis, RNA polymerase, cutin, suberin, and wax biosynthesis, ribosome biogenesis in eukaryotes, plant hormone signal transduction, axon guidance, fructose and mannose metabolism, pentose phosphate pathway, and gastric acid secretion. This study unveiled the impact of the plateau environment on transcriptome gene expression in yak buttock muscle tissue, mapping out the gene expression profiles specific to yaks living at varying altitudes (3000 m and 4500 m). The findings offer crucial genomic insights into the mechanisms behind yak muscle adaptation to plateau environments.</p>","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"54 ","pages":"101395"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbd.2024.101395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Yak meat plays a significant economic role for yaks. The unique environment of the Qinghai-Tibet plateau profoundly impacts the meat production performance of yaks. Yet, the regulatory mechanisms influencing muscle growth and development in yaks within this plateau environment remain poorly understood. The study investigated the transcriptome gene expression in the buttock muscle tissue of yaks residing at varying altitudes. It revealed 516 differentially expressed genes in the buttock muscle tissue of yaks at high altitude (4500 m) and low altitude (3000 m). The Gene Ontology (GO) annotation indicated that these differentially expressed genes primarily function in RNA binding, identical protein binding, nucleotide binding, pre-mRNA branch point binding, unfolded protein binding, insulin receptor binding, fructose 1,6-bisphosphate 1-phosphatase activity, collagen binding, platelet-derived growth factor receptor binding, and sodium channel inhibitor activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the differentially expressed genes predominantly participated in pathways such as the spliceosome, aminoacyl tRNA biosynthesis, RNA polymerase, cutin, suberin, and wax biosynthesis, ribosome biogenesis in eukaryotes, plant hormone signal transduction, axon guidance, fructose and mannose metabolism, pentose phosphate pathway, and gastric acid secretion. This study unveiled the impact of the plateau environment on transcriptome gene expression in yak buttock muscle tissue, mapping out the gene expression profiles specific to yaks living at varying altitudes (3000 m and 4500 m). The findings offer crucial genomic insights into the mechanisms behind yak muscle adaptation to plateau environments.