Self-Supervised Anomaly Detection With Neural Transformations

Chen Qiu;Marius Kloft;Stephan Mandt;Maja Rudolph
{"title":"Self-Supervised Anomaly Detection With Neural Transformations","authors":"Chen Qiu;Marius Kloft;Stephan Mandt;Maja Rudolph","doi":"10.1109/TPAMI.2024.3519543","DOIUrl":null,"url":null,"abstract":"Data augmentation plays a critical role in self-supervised learning, including anomaly detection. While hand-crafted transformations such as image rotations can achieve impressive performance on image data, effective transformations of non-image data are lacking. In this work, we study <italic>learning</i> such transformations for end-to-end anomaly detection on arbitrary data. We find that a contrastive loss–which encourages learning diverse data transformations while preserving the relevant semantic content of the data–is more suitable than previously proposed losses for transformation learning, a fact that we prove theoretically and empirically. We demonstrate that anomaly detection using neural transformation learning can achieve state-of-the-art results for time series data, tabular data, text data and graph data. Furthermore, our approach can make image anomaly detection more interpretable by learning transformations at different levels of abstraction.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 3","pages":"2170-2185"},"PeriodicalIF":18.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806806","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806806/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data augmentation plays a critical role in self-supervised learning, including anomaly detection. While hand-crafted transformations such as image rotations can achieve impressive performance on image data, effective transformations of non-image data are lacking. In this work, we study learning such transformations for end-to-end anomaly detection on arbitrary data. We find that a contrastive loss–which encourages learning diverse data transformations while preserving the relevant semantic content of the data–is more suitable than previously proposed losses for transformation learning, a fact that we prove theoretically and empirically. We demonstrate that anomaly detection using neural transformation learning can achieve state-of-the-art results for time series data, tabular data, text data and graph data. Furthermore, our approach can make image anomaly detection more interpretable by learning transformations at different levels of abstraction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经变换的自监督异常检测
数据增强在自监督学习中起着至关重要的作用,包括异常检测。虽然手工制作的转换(如图像旋转)可以在图像数据上取得令人印象深刻的性能,但缺乏对非图像数据的有效转换。在这项工作中,我们研究了学习这种转换,以便在任意数据上进行端到端异常检测。我们发现对比损失——它鼓励学习不同的数据转换,同时保留数据的相关语义内容——比以前提出的转换学习损失更合适,这是我们在理论上和经验上证明的事实。我们证明了使用神经变换学习的异常检测可以在时间序列数据、表格数据、文本数据和图形数据中获得最先进的结果。此外,我们的方法可以通过学习不同抽象层次的转换使图像异常检测更具可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GrowSP++: Growing Superpoints and Primitives for Unsupervised 3D Semantic Segmentation. Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection. Parse Trees Guided LLM Prompt Compression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1