Assessing plant traits derived from Sentinel-2 to characterize leaf nitrogen variability in almond orchards: modeling and validation with airborne hyperspectral imagery

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Precision Agriculture Pub Date : 2024-12-18 DOI:10.1007/s11119-024-10198-x
Yue Wang, Lola Suarez, Alberto Hornero, Tomas Poblete, Dongryeol Ryu, Victoria Gonzalez-Dugo, Pablo J. Zarco-Tejada
{"title":"Assessing plant traits derived from Sentinel-2 to characterize leaf nitrogen variability in almond orchards: modeling and validation with airborne hyperspectral imagery","authors":"Yue Wang, Lola Suarez, Alberto Hornero, Tomas Poblete, Dongryeol Ryu, Victoria Gonzalez-Dugo, Pablo J. Zarco-Tejada","doi":"10.1007/s11119-024-10198-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Optimizing fruit quality and yield in agriculture requires accurately monitoring leaf nitrogen (N) status spatially and temporally throughout the growing season. Standard remote sensing approaches for assessing leaf N rely on proxies like vegetation indices or leaf chlorophyll <i>a</i> + <i>b</i> (C<sub>ab</sub>) content. However, limitations exist due to the C<sub>ab</sub>-N relationship’s saturation and early nutrient deficiency insensitivity.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The study utilized Sentinel-2 satellite imagery to estimate a set of plant biochemical traits in large almond orchards in a two-year study. These traits, including leaf dry matter, leaf water content, and leaf C<sub>ab</sub> retrieved from the radiative transfer model, were used to explain the observed variability of leaf N. Airborne hyperspectral imagery-derived leaf N using C<sub>ab</sub> and solar-induced fluorescence served as a benchmark for validation.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Results demonstrate that plant traits quantified from Sentinel-2 were strongly associated with leaf N variability across the orchard, with a strong contribution from the estimated leaf C<sub>ab</sub> content and leaf dry matter biochemical constituent, outperforming the consistency of vegetation indices. The Sentinel-2 model explaining leaf N variability yielded <i>r</i><sup>2</sup> = 0.82 and nRMSE = 13% in a two-year dataset, obtaining consistent performance and trait contribution across both years.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This study highlights the potential application of Sentinel-2 satellite imagery for monitoring leaf N variability in almond tree orchards. Incorporating plant biochemical traits allows for a more consistent and reliable prediction of leaf N compared to traditional vegetation indices over two years, making it a promising method for precision agriculture applications.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"82 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10198-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Optimizing fruit quality and yield in agriculture requires accurately monitoring leaf nitrogen (N) status spatially and temporally throughout the growing season. Standard remote sensing approaches for assessing leaf N rely on proxies like vegetation indices or leaf chlorophyll a + b (Cab) content. However, limitations exist due to the Cab-N relationship’s saturation and early nutrient deficiency insensitivity.

Methods

The study utilized Sentinel-2 satellite imagery to estimate a set of plant biochemical traits in large almond orchards in a two-year study. These traits, including leaf dry matter, leaf water content, and leaf Cab retrieved from the radiative transfer model, were used to explain the observed variability of leaf N. Airborne hyperspectral imagery-derived leaf N using Cab and solar-induced fluorescence served as a benchmark for validation.

Results

Results demonstrate that plant traits quantified from Sentinel-2 were strongly associated with leaf N variability across the orchard, with a strong contribution from the estimated leaf Cab content and leaf dry matter biochemical constituent, outperforming the consistency of vegetation indices. The Sentinel-2 model explaining leaf N variability yielded r2 = 0.82 and nRMSE = 13% in a two-year dataset, obtaining consistent performance and trait contribution across both years.

Conclusion

This study highlights the potential application of Sentinel-2 satellite imagery for monitoring leaf N variability in almond tree orchards. Incorporating plant biochemical traits allows for a more consistent and reliable prediction of leaf N compared to traditional vegetation indices over two years, making it a promising method for precision agriculture applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Sentinel-2的植物性状评估以表征杏仁园叶片氮变异:航空高光谱图像建模和验证
在农业中,优化水果品质和产量需要在整个生长季节准确监测叶片氮(N)的时空状态。评估叶片氮含量的标准遥感方法依赖于植被指数或叶片叶绿素a + b (Cab)含量等替代指标。然而,由于Cab-N关系的饱和和早期营养缺乏的不敏感性,存在局限性。方法利用Sentinel-2卫星图像,对大型杏仁果园进行为期两年的植物生化性状研究。这些性状,包括叶片干物质、叶片含水量和从辐射转移模型中获取的叶片驾驶室,被用来解释观测到的叶片氮的变化。利用驾驶室和太阳诱导荧光获得的机载高光谱图像衍生的叶片氮作为验证的基准。结果表明,Sentinel-2量化的植物性状与整个果园叶片N变异密切相关,其中叶片Cab含量和叶片干物质生化成分的贡献较大,优于植被指数的一致性。在两年的数据集中,解释叶片N变异的Sentinel-2模型的r2 = 0.82, nRMSE = 13%,在两年中获得一致的性能和性状贡献。结论Sentinel-2卫星影像在杏树果园叶片氮变异监测中的应用前景广阔。与传统的植被指数相比,结合植物生化性状可以更一致、更可靠地预测两年的叶片氮,使其成为一种有前景的精准农业应用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
期刊最新文献
Cauliflower centre detection and 3-dimensional tracking for robotic intrarow weeding Forecasting field rice grain moisture content using Sentinel-2 and weather data Highly efficient wheat lodging extraction algorithm based on two-peak search algorithm Detecting spatial variation in wild blueberry water stress using UAV-borne thermal imagery: distinct temporal and reference temperature effects Stability maps using historical NDVI images on durum wheat to understand the causes of spatial variability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1